Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

33. _.-eRW0,rt. oz/.toil. ize. Jcrw /a (a, e) -,) -zze /t- /AIp. bA c, 1 l pa. ) Ic d Azsv;l o r. r 'c. pI'/-.. /p D j AM Jz - /e az c - dci crvc 'nzee, on-, ac ri — c '1% lcnrzcrJ-: 1. — c. ^- [_ X l._ X0 Z -- o c -- c d y /7 ^ C7nz- concrIi dt-a-u - e, e~unct'r.? cc-ce',XD Le dtcotev Co oi c9 6 co y - Tl-Le. ' cor ae a. crrent 1rce If tE/e 0tuz (Ci) jIong enc-c2/r lc, C tor co wn i'cZ zc r:ad7 'c p cozme p-rIC if/JzLiZ t Z7i.twa atr aai-ce- ei Jyrrentct AM, comvpu7 pIe- parlcr. L poit'-i A, cot po t7e J'L a -rmi'icozik AD lc 7Iu'a- 4 paz, z + oz - t cy en J nt cor zt e C zo +,' con zjillL pOitn-t q1 LcTpc. T +,e x y, z, r (c C& d coiIt cmn 4 uclio, tcrc Jj.^cr pac L cctLutwnu?ItiV4uTph ( zxo- + 'Y* I -- ' *^ -r p t{, I (Iv) yz y, -4 p c-3P VZ X. /Z 4p Ccry, ]),c4~i no rTU to 1owZ/ uuar ' vCc ^ zfa, lez 1 cocdorrniee^ dzz?oird (0n ne. K, eA d~ L / cL?, y oL, anfc3, y etu LJcoucw1ie rce c&vec.eA6 axc61. (Co77.1Z/ZztJorH^t- 4 1C lc zX co tozzw' OB(CA eBA i 0 P QM c tz-^ alezc -- z 'D ~/ ^^ rTte71 c7 c4o6,cdonornec4- dcA vettzx p.inb A c M.. ee r-6Arbljc'areprtzcu p i 4facrtceAMjpa / P// f Jetsz cconiwotiz OIJQN ert OBCA.M onzt i- A em rrZ. acri-_i m K, pc efrd -,-i —:/ / j /A / roJ /" e coo& -zz, ort hou-ve/ I / '^irc /c.61 +CotJ 'cX1 +A Z Cc6oLIdonne-f^, O Ci / g/ (i12) W x 2?c-ty+ Zc zy -- tx zo <'y+Pc, 0Q ' x y C. y - z x C: Co z +XO + C y Crz+0 C y; oIL voi4- yc/. ceS W/ela&tt1,iC. Co01rCCPCwoLt L/ /mzermcr /ozmn e t- /oiz conaruiezm /oezu ti4 ac qa'ccmde.L p corrirzze. P,7i-. /leiea.:t7i1ant /i Ic. / &yicrtf AMI JJeia Li',c da"h Ge -ienr, ke iz2erTz- dotl/c f//7ri~ 7a'cLd~ a e c, y.Y 0 - CeLti_ Je/7.J CCn'CLt'CC(O7rL. (ncAZ ~cl relath~iai C() fc> e" AtIir cfcCcctcc> J& lL i. 1 (;-.X) t-yy)( coy> (z-z ) Cx2 (X-xo) Ce { t(y-yo) (Zz0y) -Y Yx-(^0 )c C ty-(y0) &yz- -) CJT.rnicVC 'o u u I. J fr ve22 LU'/ C7c. /61 cOO r2iOZfrLcP4 Lz/ cupount 7futlc/ffrc. t. d,.coL- A D / iLj c' iCe.Zt p pLLL^s^zmp/^ ve ige/L7nvcl - cL- ri - coikE A D lpatz Ic ~S-ruj a. bc-, am'c ee /i ver-c ffi soori-oieeJ * e),vc).ri0pkr2at' CJ ade' d ai- pCtIL (-z t y, AI 7 el- cn p -rpcoj61 a r /a l erzLC// kcw /c ifac i^iLLz f)l, onrizwc / X YO )/(,, 4 A irLZ - ______-I tL A ( 5i^.A l xW^o+SLp ( I Z/c/oZC / J /A,13>h/ J C.^ *' ' ( J\,rL- C (f. 'tozm-iLi J.onl 'tcn eY'caw pOiZ/,.ts de. I or con~icnnc c 'ccyafo.c p commte poJ~i~ai.e~ing^EWatl-^ tutiz4z qeqrrzmcni AM.OnZ ctatc do pozir A eJt pOZ/'Ju'C -.z c / pafc-^ arc aA, b, c, pLott Aa 'olonamet nt d! e ce J!C- le.m -i 'ce

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 14-33 Image - Page 14 Plain Text - Page 14

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 14
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/40

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.