Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

D ' ( Ll,. L I t reel | eQ &> 17S' d7. j CX-t~ 2. o.ctipl i -' -i7S i 'r"X n-zcl; ce~-t. -- ' 2 6(tL t. AbaH..o-rc"A._.__,: __r t'xrL 3 5ITX-f )W <x rmt r dwl.t. + ru, + cb?, j_'_o *' r u c/c J culr fp VCI <[u_ cai cctca,,:,,,o / 5 i utn a o Q d/ j.:L J t2 p i -utatc dcC 1VcLZeico rje. lCOI*tZ I t j o LmLirCL7Iac7c7 7e r e/i ci.l-itce13 |LL l (~V e pt Z u_ L-yer tc 'i. Ze<i e iaioa4z (71)rts ( l2cCOt ~~~~i-~~CWl rtle 1-sI'c_ r_. (- a.T + _T - +:L,o/", 'n iL. ' r /i C~~-< ar e-o 6n.OXAXirtnebu. <e k- <c t3ttcr. LT,^ea re-'-iXisr --- o<2s de'torpn-i-ua Tr{ e.La~i-r) Lj -Jed0 e r/. rl ir",/..njL L t.....-.t3 dJ......I. t..a di1t ol ro tU Sz, t:Cll /rtL' ~-c-i' ~ e..L ITI&f f' f f -Y fz, r wf,+ [) mi~^ n-n.t- y+p~TM r i.e cialidori (l) / /l!rr iLnt aeL- fcrI r eICirz ( 1'-77itia/' cOmvi cki/L &f ), a mcLt e- P. -= d- P 1 --- '-e el /onl i Ieo turo /0e / aLL u lc o njx ree- JeraIL ~ qeme de~f de/ob-tI,,x iLer e/q3 aZaio (X b J. Doic, en, ic rr'A!' /y Of I rLUc -K Cor l rtle. j -lLa L c-o'it c OQ3u. Clc d.oCmvbct c^'.; 1 <leA tnbc? <e 1(Ebt e - Pe z Cefe-LMUtraj pa"e d<e> LAJC pox T,?tllac LJ, (i0n- /wietd lrgleYeLfC/ai c Pe 'op rY Lcele c4r7ImZC dfC1i7-iLanc_ dcL diam-Lce. C )Lj / da zi^it-t. tc IA -Mtx L fc 2zn Me nCCO I a'tcre — (3) f tc,, x-y - (4) z = as - L y —:}, / O7- i tl rtt u r L n J relcdTagntA- rJt'L u l7/.l- iin pl-a1I'la e ), Ae CirLC~ uIe7^ L/re.Ci^Cr rarLee <t* h1.' / on.,?~ esrr~ ^en ef i>lr4aL ( 3) eL { ) o aL2 7 - 1zitc -i L pLrol iecliode- oiXzr A *a Jc -y, TTmd IG ceri'ce de /a p_ LjrEicc/~or c-ilf evZl cztneaizi LLt pwfJec^roet dJt.ezilt e La- eJedo i 7L<prLijL / 7c irir/eiz d line d1^/Yci -l e /jjcjlie 17Lou7/0t aLL izr Lc2 iL e - / J.C/oj iZo ZC < le coorodonn-ecf -cxeL Ji Ceril- e I e Jla /J'C3c&tiont Jetrzt-tL 1X- t I y dfu cdr _e /- pl k-ectr-. O^c ie cenjle c tL.trIecLh c aotiurazd,- ct l a4./r, n, e'o /io- deioueeC p.ar- o-"po'- L /.J 't /. y Jr.- l-emit.- mdZerl clae 2' azanLrzt; I.. t a-rue Cc6/e', *cdi c-fUaliorr Tj olfl;-n! eer renzpldant l pa-iz VaLeut^ (Jt) da2-1 I 4tauftLorL (3); 7ae4 codr6tel,' (5) f.., af, y + fz -,

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 354-373 Image - Page 354 Plain Text - Page 354

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 354
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/377

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.