Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

,JfL'-eme qzczlX ziE patie- LA c-e amen L.em7p, c-n'itu r c'rLq, Lc c z'uw-rei^ c'i r'a i iz7, e Jncru U 9e ruri. na ea.. coo^~.o e,Mi4 S caf) v%%RwtP - ^4-9. L~cpsCefJpoutL'c'^-Gei^d^ie adced '0x OS, 0-^) a/.( c Gs~t^-( y0/ g )z')n oziez/3 7,~rrtrwuner7r- l 77bkm^ p'c-urdt^ i'o^ ' toirm-6t izze ei /.<OG177 ^^ T azat^ ne'L i cza e-t- O 0x, ayt Oz} ci'itlo e d^ r. - Il4e- ZnZ1-7Ue e Ge ~z1 (-7 ) ieZXe^ ctqnCeGi-er7 cte ON qz noz n<iZ<3 < 72a, Ox o -O y,7e de-pPGt'L et M Z a' zix J 7zT' ica —Pa ^ re- irz larp z rjZ io 0r y. O 3. W9, la-tj ~it)L- c te jt rLu a wea 'cOta o ' ' tri' le plGndL XO-v, rLz PLtt — J l0c,, ONO ) dn i Oy/ 17e-7lte J-ime- ep, Ct Co,.pole e t lJ. f~tU VL It. nta. j '. = X1 C7t ~f ' — -5Y gu-6 <f? t = ~ '- f! 'i c o f; /./ ' O e 7 <z <' <z Y ~- p z 0 / DCw I 4 7t7lrY. OX zc- d erL...,y..cerdve u/,;J cez-'czcite po7DJtwll~rt-( -<'d ej}-d'4o.-' ecta —L^^eze ~- ce.^ - z '^___________ *cti, n dI n 1ZLiut — OZ c r- -,, m (0:y 0 ) ji..' / '< ssx} 7naS&5/z Jecot \ 51 / X\ ^ ( y y i- ^ 0' au Vy -C. Nt -~ o Btz' c O; o. o~ ' d., m.:tirnecg' ~,:~.i Co~ 2z (~,~. ^:o-, ~z ) j _- >,: Z, _ /. 0, ae,^nt. o:, ofi', oc,.O-,z-eOnroLe'a-ee~Ox.'',~ I': aS e ~ 0, at t 7ie. 0-y^, ldan L-7 t Xc'0 pzui s k ce" -ioi VXZ I ~J ~ / J o ery7ee' t- ~e-0 (.3) | rt = x c t- yvt I 7 y^ I y { ) -^ yw(>l, I poir^2 (xi~,y yx') c 4pnL7c~ cco' dornuec \ c, -y,, z, do n b le J~IIcbM~C 1e_ (a-ze zj a y! 0eZ-).<ae oixninar/ x-,a1, yL fye, pne paO - ui iLttru,(l e 1t ( U,>- (1,2t,z ltto ioin^- i a IU c ALrnc 1,r6- itl eI ocxrrPchz cc. ' o_./L,. a'r-n c.Pse)t_ 07LL a_> ( =r_ iCa C', o C^ ti" 7 q lrl Cf3),, +y (- c Cti tlj- 'I- t CeX ) t 1) c '.Lt );( (C1' \1 wr = 't' 0tilt 59C^A+C^ t ^r CC> 0f-Jt tc ) tf Y ' -;t O tftrL <^ - cx <Cr t k d) z(- 9t'U-0 C^9}; | =- JC.)trL Bp tL + yl C<3S > ';l t}f +' <^ J; 26- 303i"d-~ttA6<tt6, 50. Jki { nnL ollet e Se~iSolnaf.2 (i3J c )X ~ iM2| i /ortntEM (X8) y23c~z 7. /e - r-t-C 3^~ ^^ tr3I 1 -c r co jlT'711 el d ('sJIA C jcIC/ j~t~ part-I3~tri

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 14-33 Image - Page 14 Plain Text - Page 14

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 14
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/35

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.