Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

332 *)4f. ^ l L uL< de<w^~3pp<LEc i^)dlre0 2rt. lp Azct- "tiu-abton6 Ta-nL-La enLrcl& (3} ) (IL, _)., =o, r(L,,, )=-o, tie/ Aj.c eL rL neEr-L, S- cctlveTTucLtvi - AL cale d> Xloppap l- cttC- x eaaC,.'m l rn effet, /a- cto eoP cgaZe cfiL a'omJ>'C le.-LI pleauz zqrLaerz q a-'onz- -"-1pa.zn pra,_'uz~ik__~iCi-c4rrtfLb c so2 Ch(-) AtL+ B t C - +i D =o; O'<- Ic pZ-.na tariedi 7rZetj a<i U JL it ) pd- /e pointZ (li) Pttt/C.L; —d pJ' -JOci;CtiLLru2Lr" CZXLo) eL u 2d LotN (3) et i11); ma. I L2Z (k LL JL i m'c.. V l. I.t Co cCuLC. Ca.sez ctvc^ daauc nL'oro pazo e L; TS eri 9eb.te;vW- x-iLLltcr- eL >J Lb u J L" tnci}i< l; iOL^^^ 5tk6dC t"l (vy. 1 O. 4. J CJ -f'ua 'L<aa4? L-ir Le- Cce<- e c-c cd Loe pou'c- oottA-c,, p o L cJ< dJ c- trw el-Tp'bO+~trlcl[t~; 9brrz.U^ (yet4 l)0 ae.J.C) 1l.Lu-n r ugqDLa pLpco A 'c~t^ i. efrXa&,lc; ~arppt) 6 n. LUe ) / uti a pt., lJ~t2.L 6 ct U c<3Ct (, <j<T,4 <bc~ uc ^ 1 00otk- aOL Cc'. e } oc ftv^ - J'eT a v i toL. (wo ( C ^pGC(Cu- r L-v V& Ic 163O 7 c)YCo1t rmi ptt i^ LW peu-^ pLJ t Li., i^ trf b lf y ccoruuxlmz —^rr &, p" SttCL,; Ct16(3303, f cglxv 'OecLt^ 1 r~un co~.a\M<S t*<^3LC~-e~z, *^u ~ti i ^ Xe^ d~oiv- d G- iX~pp$/ L2 Cuc^ - <^iPUcm. A 1(337 -L CC^, ^ t rCaLLs CI, | lid^< IJL —c cn L* P cCO frLlc dLo^; viLx dL( 162J^- I1^So WC[[L (11 671 -), iCL gCt Citt - J /I^ -16"Cz ( \.6'67- e f (3'*" \6Jb -17, l7') ^cl~-. Gaf t tde 1' 1' Jga, Cc DeixiR, C ic6 3 CPA- t^p6 (17l3r-? 1g -o l.zo; L. CcALp -lc co/u'L cl m, traCCcC nce t m~J II<^9\:t^ I~rL^^a~e,/ <j~e.) <:<~Lfc-y<*-~ u~xac^</( 5AU1bc.2. || o,. Ac.cnd p~u o<.j,;; _ \-net- 1?z z._ t,. - t ic c. /^ c,,,,i, t__b./, rb.tc- I_./ X, 1ea I~OL~ In tIL t?lone, 'tc -, le [ ' 11 int r iLE-n- teleie — YZLt L ai j t- n u- L.X- "mTLbLc- LtcfuL G~ pnxiC70rZ6 1t] \inJL r 1arL tn.r u/rLrzZ4 _u i'c i:CCrorriLcuc -, cJ)<n L,. |4) '1 ' c l) a^v CctLa tJL e-un puLb ela- C4L0.W. lo t.i p<evri Jc '6 tI-tE 1ntC U / d VLunc!hti;-l 07!b' 1/311 '~ r~ic~~t;(113 I~r~ ILIO ~il LZ~~ ~~(~j dCCI OL~CeS L~ ~C I I I n ek~~~~~~~~~~~~c3 ~~' JLr,1 o.' L a.vlp came 'cL aUCi->.a"LrL&a. o uz- a_ p _?a-' L t~ Z.- =f, CL), T=f. (CO), - f3 C(),:oL Li L2.!. L. p?,.izcc,,,ate_ c_;.c.L oc L c~c8 a t7 lc.Z G t-.ec< n a r L acG

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 314-333 Image - Page 314 Plain Text - Page 314

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 314
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/339

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.