Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

314 - i -lnoL~ r aLuJOI7 o LV 1^ AI76 o lL -ev- IPI d eV-t t 1 p anip A-t nZe.Zn t Pe ", r ) L pl-, ceAntra?. ieZ [lda- cZ ienle-v-enr-kr lzq eon Bf x oij'c ac^ c 1LIX 7 Tll G cze- 'e4ci- deCLa3le_ nt Z, nr6 dnjinrt\ voL; oznl-' Vmtel7,!n, 'cciIIadrca've.C - p d a ta/g- iL.d" e I | U A" Li tmXarm paWC- V Cxeb <5u- p dtr Lxzi — a p L at ri en- IA avCeX.- Ca rL- vi n en-t OirL 1 c.a,_ Ca- &p;rL C crLLc; TO. 0 ' <, L o TpLa | Lxf d itCcri -fu W L —p<3untJ M <XLL pOji^t CCTL-nlct arLoL (P-*cceia;ol0i- %cvrT^x'cq~-t!<zP r 11 (1U ) Efec"al,-. I =, 1'- ~. = I ---, aa^ C' jjvz~rL-'I'=- r- ar-' " c '-P I eOt & _/ p~l o CDivCti d.idi ue i J3( <5L uc. Le.'c<Scze n~tZ-rurmerrofc^ti <t f le t~iz^ Ln laP cc _ J-<ZuCL[L........ -.. ~ ea)c Twrn e cU.> t~. ct i t~-tbi Ae ^.-, ~uG. 0onte t'0 t, cI, ml:,, o tLIZne.V Lp.'. dC.ecrrincL -L (L'c ctl 'atiOZ7 n aU 7 C ien e n o et c uiL '. ~ L a-tXci ' crjTcv dl UpTL marLd n an &o p u c ---l mc et p" pcoom-T alnet a-I< LXXtL-e- CwpcLae dI-< cranfc<**t <CtI — p<3Ut*- centlrt E. (< <~ou~ b 1uxrL-i pe-c t3C vne1L t-<cuc Gr coitb e rLIT —Nl rLt potitL -ae- cett^N dc<coi ac e-t I oi p LiC- - NLyp ita nOL- - car e cMlle L L-_ p)en, }l z9 )~ lu 3.3 o'c^^zguev Lc POeLptf d0a conrtCz-=, M -axc wcfc'; d "coit -- CT P pae-e >- -ct a t/ e d —1 ua'Cte ac -"1 ^ ctflqZCI a/~ d. ~L~~-ca~za~-~ec La? ~-c~. ar. PcX n!cr eL-ru. —.-.J( J i c p' G<T,- cait^^l~ -C p'cxT2L^rLlr^[?^^ C t fo M(^ dc (utt^ *T ^nJ - ca.ce 'r ^AocoU,- Lf^T I PCLK C~eG'Lmae od L G' G fpcoo > dtwlnc^ ltrli po~rL w 'CLa Aa 'p~ ct po <3al t2Lrcnt ct;Zrv ea~a "rL_ >T a ^- Tc E cdC*cc pc^. j2 e b, ^ttlpdJ ori /.~i7nr, Gr H barmteni:- enM pM ^ 7Lou cantL erL~^ c.sd, Ionir7arcnl^ la nocmanrle att~f a. la -juwrcke:; -oi.& 1f I -p, WI =p P',,i cc. O / an drryDLae, I JWlt n Z2 Le araea.rc peri ta I tro, aie. N H, e7eca- bycSrdt a kLL <3wcf erv N C / a _L e p n- cCef U. aonZ/l coNrrnpnSt ce l 9, j- a^-a. r | -k B p, ^1< -—!* = p; d (.p W-k; Ck7, JC. | I Os cJ3. q=:S p'pCiZrC.-?Lp7a~l ^co'rp'cLMb 1 " Ile d blanrl l e diarn& ZM iJalcm zdtZcbJ ozS &ct donozeeo rja-cz ClfJ/ ic) Igouscr dc c"'. t <^ f~^"fS. 183,7 1 n-u Tr,^. l 413 B< * i~ coo dozzne~e dc-JL poizrenl iaL l-; 3. a,=- valcI A. de, LZ cor u tS' i-i ozL0- pa'cirMre- dc- ILtMaizzi-ort, ccjIZ dle. LCo'z-tLCte-L-c- VotL~te — CT% JeC'It " c=a,lz+p, a,=a+-Aa -p +AP, [ -.,) 4 y 3+., | b,- \. a b,,r,-q+at. ~ 'eqa z-loJU?~d. iLe -p n- CT P G. c.a'.l dv, p.n) nao it 'C L a'ael ^ C r, edt (3 ui^-c...I du, J 'C p'~CIL) (CTrC,):~) [X -a-P )(- b) -Ca, -a) (-b -) =; C-ax-p) A - y-bb -') A a =o. I^t'../l"%" p-l"~(J ' ""PP c -in aT L,,.pla LtaJ PA pZazz, C-rTCr,; Jo er INLtakLon sfcza- do/c (CTrPT,) (^ ) (c-_ ar-_P) A a (- t+ b)- a 1 bb) +(y-bt -q ) |C~a62) A L-ab a) =o.

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 314-333 Image - Page 314 Plain Text - Page 314

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 314
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/321

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.