Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

IJ. rCo'CrncrrW CtX R, / 6L ajLjXtluX L pairi Lel@ clititCjCx I)/i. "' TI) rwcrtio^ Ct CL~ttXL dcidcetccil3t poirvlub 'trte — Jan^ acc^m c & Lfl- c. t, LfL-ucL cL; ePj.,0) |'+' -bo'z t '- Pa'? (a + ') -a (Lz -4 ) V, 3 V7 v0,> Lc coo'Jc6rnee 9 at cLaZj. -I-o 'pcarLrtes/ cL. (f- yvarAil paipoz porAC te1 /ecrLj;iC i aot -Lrb: u!. mZ-mna gen- e 'n icc, 9rLobttuRan L r 04a- | n u aqio lL hai- Lt dci rzot'crnzajsi arti ernrLniatiL Z. efU-rcv LC /1S e1 c. 2 a2. L ic ns C(0z) ( —'.9uLL 9.17-2p11 19C CcL4i-i 6C9J CZD Pcc J / p'^'tZ4( ia_ if rmac-J Z 9 eQ >- 'c Lefn/= ae -- f~apope. 9/ t,: e ii^ / /e^/^ ey.cirLq; zrL^f (1.t'. i4 TL94. /9-0UA2 0v Tn- si-dlO 'C0?. CL doQC. Kf ' ---- ^ ------ 0o. ( i I) -0 a i- '- 1 q., u -t;irf^ (| ^I ) nep'.0nntcr I ztr p-tR. P ie' c'atL '-G - c i- jL a- al- iLa- con LIe.f 'L; a -i'o /-rS tCcp -'6Wnta- *r pif - n. p4 p aT-n pac2L fJ/. fe /7} _~~~~~~~~~~~~~^ ---) — | "-c1~ J'a-ewt Cv ac CC2 < '_A III~;la in-toi 'eir c-a lrcC-n- 1i1? c / ^ 7'I t /7u4 ^ La l neZ 7>t-z% c. G 7 < ppZceC t /ni / c7 - Z /- C <rJ i-2f *IeC 39i. P. - p8cyr1 LLcz-n k rmzrte pj rii 5 67Jc Laa..f f 1,1 11(4$ o 4ze~-sI~trrcL JSc. ' — apr w n 'ocX -!4ux? - I ',0/~~~~~~~~~ z 1I Z < rrerl p/~~~~~~~~~~~zxz i <:erbl~~~~~~~~~sfl 2 -fX f~~~~~~~~tEXPRZ 1S 1G~~~~~~~~~tf.'Yfah,/ / / G | Cw L-ra P 9. 1i.~ 7- C/J r.LijisXLb t zrrnc? Zr r ls irL -'r trtf, /"a 7~ "/c4. 9 CciP- a ti — rc '; a- j-e- - o/j ze, L ' 5 / z a ]~ pdc L J, r o - - ~ -', I 73ci /^JZI 'cT <?.)~rrt~rfLC- au^n ~!^. eji~c4n. /iicjTL9L(. l{iir2I, ir nrfzarnG pa-c iz. Zpoi 'MnY p/-n pac pc r7i ci 6 -aC7m./a-J C n t pCC C G C A ar-l 21/OiL CT P (Aj LI~qc/ '~- CdF9/4.77Pi - I'll-i27cC ^f^*-^^ cs!Ln7pl ctntc~inl d^u'v Ll z.,t-t ~~^ ~"-~Ic 7 -- G-'/1 crap/ca-coneiL wl infc p7-VIJ CT catCr1 r v /C- pa -eh-i irc Cx -P P, peipt d CnL-&.LLe C(Q9 L h, c/Xarl /134 kZ tya lr c zccI c Lr ijlU Yg-l,;i c M ~P$. 1 = M. _r 6T4g; M I - r / al *a1- pl c'oWdrc- 6It2p aic T PI? Ott<- 1 e l C et C - e - | - ______ __q _ p 6 a -7Px. 4LL- ~i 9 Gr -— M- — vec CT Ue1 * - ---,,,n~~~~~~~d~~~ ~ 4, c

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 294-313 Image - Page 294 Plain Text - Page 294

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 294
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/320

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.