Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

291 (7) LL, =L o! vQ = Vo (7e.) <f, 1 ', O, r o Jlu, d &ij- /'ct/jztaazion (5) et le/ nta iorzC- (13), ae- pLaL- elne-rta ipo (, y, t,) edt (It-,) u,, + (V- 1), V,,; eyzlai/0l41 zz iezeLh ewfrvcc& CuzI-celdzoc- (7) e f t(7:6) (C -u,) ~,',t + (' - o) = oi 0- M a- L y zrG, pCL --- puen- at apo yu, z,) coiJcrp (/, lYi z.m.y, S7/^ C0L^/ pOaL2G ie7 c iOze w oLAi2Z pu ii tr nt- i eltiZL-orzzee pev pr <c< _a - i A,p<cLllai/e ct. J Ga ica P d Z- c iyZnJe; eLautOL-n ae Zl Juc c Ln Z/tq e t eait a15 (_ z ee^ -oid aofrz i #IT) (2Tz- 7pe-lt~ eflca'ce- C O o e: l Z e7?otget Guc zpaIe pGa /ax ib azrL L e,,e Jc'rad- tzlt k dc cfa(2) -t(-,yj=i) _ x'Y)+ +-4 (X2 Y)-t-'+ 2 (xy) + (A+xBy) =~?o nc1srLon Ci eL /d CT JO en -? el C$tzlad 2- J aeb eL zz po x.. y _, Zj) eat_ qel c,~ ( O4i) 77azi '1 -ei povnrb eLt 6't X-,?,JC e Z, o a po =0a-, y,=~; j_/ u _Vttrl e,ppe. p/ cbicti~iec L- 1afi 4i r- f c: fx =A, f. =B, Z-0o,. frO A } f yO = B w C~o ' 'J f 6 l'eaioaarLz dzt- p~zlzr hwa.<= en. Ltnv point LAeadZce, 0z ez7 dcnC (3) As+B-yr 0; ceS& fau eioti7n n7 depen,"e Z 7 ILa crcLoTtLee- 2O ' TorLc- pL Lp 1 laxia pae4je- par l- JenCe/aczdcet e eot leiMneZe po7ux- btO - &AZ lroi/bZ 4de cef e irlxera Plle. a, 'y -o - o;ee Xfi3. &otant I e'zrcadojn ddeE dJ^ c^nc t Uce 3 +ofrLfeee (1) f (X y,,z)=)o, eLZ (y2).x- rr-, -y= rz,z. l& dvecHtorl do earzwacLe i- yzliruAe. Zace. ejurdnzor del- Pa cowc. der cotactL ci_ giiLnLe cbvc40rzcic eL a'c/lZe L iLd —caioi (2Z) <5e7roz c-,/ 3 52j: ) f (:y,z) 0-o, (3w {m f. n.r~ ~_ ' +Q-o. 1Z- c0TLrLaU7t TtairtenalTzL d i-drefd^che- di /ylce-, ta alecctz r- Ie-S Cleji, on- I rTinfza le cdItlcl cormze- ii a_ e zeU'Wiue- aL)z cZ~ LJMS3) o<jA-. ^j'47. ^ctan dcwL — ci a-Jc ix dclcor yCdjbt a time- iv co i-c Idce- A. 4jeyzutd77v (ye neca/l deS zxflce5 cL& -ecoriiL-'c& oj ed spFe e/i'eI() f,ie -r t) f ( Y-Z) + ( C.+C'y+C') +!)= enz fWeznlarnl- Tp~c y cf I'errlcZle. 5 tei-omr dLe- 'eorr- tiefe -. di. Le cecr ez des itce ei / -- px -* e~o y (P) - - < fe Y

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 274-293 Image - Page 274 Plain Text - Page 274

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 274
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/298

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.