Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

263.) / -.o D d"e-j le rr noi r-i elev e c r, yr, ', Jonf: l.e t wJ J -7 t I, w~jp ei/ it)P ie. - I a rZ [ /&t'L Oi't. -. o.r..e...o.~...., ye.....c, r-artcenf. lJIac rnc^ ptJ^arn! pa..0,3 CfoL TiIi Io'jrie.I. ' Je, C onUoere qtzz J/ z02 poidz l, ti A i oi_ e - C), ed'- l7z poit 'Jot c- clA 'ceJcott>Drem e conrquLht 0I11 pn1Tit [Jouit f41t-yeukuL xcV; c J i$xe. //a^/I7 /.izf1enLJ cidai7eLon1t, C/Lci rZCL^ OfZ-Vc& pi/ iol-ti1IL pcz'7ni con< ui.~re -..p'r tL pLdoze 0'^ 4 /3.? 2Lm/n..._ A, e4/e~t" POz. Y v * L^/C)'LLCLd4t3 ZXcLctLt43 c<XLUX. pLrrceL^eC.) ] LxLC<CcC -32.. Ko'oL.c. l.-L7 pOintl 0 Ct int. potinl ttL -t -ftlip[f, c-' Lo'ce p L potIc-. trI' Z,..,t'eC,.1 l- t- -oif,~tkLmLttjt.Cl^?fc co'~cd[cC (-1-) POw-c f[x pc'CrTni. ce2 pftoPie:'( c^Cti..Ltte. E-4.ltrf ceC) W Utt_- lL- u 'o l lCnotqlC 2te 317 C-?t LIrTLUi7ti: rintU.JLIc- A^ o'?oC p powc i- tp c retl;- polO<c A. t pminel-' O Ui-mTnTe. O.)?-C^i 7J0 T l iljoiic' 'O2 y-T d.e Ci o d'ez rze I' e a/ir / i, r ' i -cc ie' Z: i0) f y''z': c QXy) +t ( ' I, ( ),~' )+',y,) + t '' q,' (X /,y)+ tm-F (,y, )=o. o /0? Cfl2ti'C poLtXf d uzn poi_ L. (o, y. Zo i 1o) a. po/ld c/_laloJLO cTiL J jt3C) -f4 t-y, fy + z ~t of- =; ~ ot& d uy?'ceL- /a /Q crne dle / e al7.atfL.o-L- Z p/Y er c^le. ~ ttz ( x C 7 -{' (,+ t y -.3 +. t Tih (^? * * — Yz) t+ { '{:-, y -z j 0 vcmn grn. ideo "e xii dtu dy'ce- -e moziiz eYvAe,' 6e. / Uwalionr (9Q) e$tf: O) t7 - f~ ' ~.-t,, ~"_ (x.,,z +z,, F +, z I.(3 — ) I-ozt, yz)- ~-i -.lt yji, -ZP' -l y ) + (Z;zf.; *pot<Xix<t ^.iu- pOtDT O <.LthL Cxi cori-> <p (XO-y,1)=o 4 hxneerLt rt O oqM-0. I^ TtL*<^ c ivmiTr t>. Jt' /ps w'Iint x,XQ^, 70 0/) if< (e. ipo e 7i7t 0 T7-7TmeT /r7e, 0r7- 70rle-/OO p0aWce = a a o /^'rz./ *p0U4L eazitavo, I /.1a~~i, e-nj- q 6iI'cL joaz' cl- A2_ ~cat-' (lctqwt) LOCct=~ e~- E.-: (~n, -,cob AoC.Y..... wcfcmjcif ( Fo Wc t 7 il e cit i. Co ta C4r p Jte f — a) or -L, eo.n: -- 1,e.,, tW-y i,,o. 14peirzf-nce cr (c_.r5 -yC. L0) (c)J u '{e~^+$j X+^(-^+c~JO2yv]7~ Z0 bx+y o JO I o'e. CC-.l eqahor- e- -. w e t.. ee/. a ~ p, y.; dn. (9zlo veil em 7eLe kt-e-l Czie f// - d-l ote 0A ez '1, jer aea, zw~_ dcoze i _loee pancfp fcries peomp.zr

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 254-273 Image - Page 254 Plain Text - Page 254

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 254
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/275

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.