Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

19 I, c~lta7J 7 /ce. BIcPl e s ti- o~rrrje IS /Sec:i7zt Jut jon pJ-&i Jicz ofje7 ~du-t.cbte4i Z. tiz l zlbJa,d ar ca e-J, /', i / I:;.A=-A3CA= cDtCCrDBt-D C CBC. \p i \~- dj i /L-z 0 )1 0 / JaonL c lL Ife- C rr. i l lorcr 'decz d /lLrrizer'd ( uefj 1ocl fiz ACe\ 1 zva i ceI J -l_- 7 2~ e AB iz ' lZ — " / /ze' Al izt -z clo v B0, cA D,,:fe.cnZ ze ZZ[7 - t e Z Z. zJoze c ca ox cto oi ed ere a-lt ze-azC D i>WJ. /acas tcLezf~etcc' bauJ/ia7Lt) A,B, C,Z1,; -c / 7, 9a cede4 coazisectL#e4 Jo/it Y7o/3ozz-zonzneLgLe asu- ated aciu-de tl /elrc4zeStj A1 ct1 1iit /ntIr azyzipc/feme/~t ar77.fci-eJ,z e-,, ~,-,JL..old /e zua-Le a&t ei ca u_ 0i A, BG C, c, / vD, A I'P etpi'ctpeCt i ne ^t aeaU. 9'corei cei ocD',n ebta~i- JU/tn: /u7 ' iLL sef~ie U1 CI I C I, TD / L/W Je- o~ l-?eS/ecLdenierl~/taa/r 7 r.a.. aZU cQ acg B13C,V,. aCntI 6.J rzneg Thin7 77.e i'C< tifA.7 Bc, CUi, DA I0i Eztc ae:mlie-/L uen lel'ccarz2caL p h n aW4 eui-/7 Ac, BA'O i '9 oc', Cala.z/o?c& JAIC, AD^,C! f i ftC/2 1j t ooltiesecz&7emexzem2hI7: f.pacorow uczlf aweaied Ie-7 g7c ai4ayQueC16~ e Jon'9 eipelz;)zinzhf1eZ ff goW<JL Jceni- ee etlhcjon a o i A ^onaA, Dc D t t Jn 'e B.c o (1) AA 7 B B Cf oBC,AB) C D Co' (CD, AB)~ t D A Co< DAA>B)-o. AB, Be, CD, DA, Jo-tcii' /eCe/h4enleqzk pepeviau1ivceS ezt L/-ceLS cbD', Db'A', AB'o' Bb'oA' C,3B,1D,, DCA, A:D,B,B,ClA,. 7oPii[c-gU t' "0 csi Ja.ne-zl iii Ult/ 1i1 {w2rc ABCD, Cic rf-cevt /k- 1t a 0n& BCAB, CDAB, DA,AB f e-DI -Z BI I e /, a~ C:) i, ':B, i alBa~C:, t,,/, J. A,'B~_ >, s,. 4~".' 0 ) ^e;< _ — C(9 A= BCc,, - +CD DB,+DA c 3,C,. L^t. o / ()- ^^i-rC p"a' A i~ B.i, C,, D),, -g al~ red /,rP d<z- 9re^Ac B1 C l1 trW ecb rvemnb-'cjp QLawlrrnnh Ar,B,/; (3) A,= CB (" CD, +C', DI,. B, D, DCo B1C,. Ot2ia ndone en ae/iZ?&l dci 6 iL-ca l yJ ---imed?e DeS;.-Sc I AB BCC, -D,+ CDD ( D,ttDA C B3, C ( 7 Co -, 4- C., B+ D, B; j BC= CD CZAD,+ DA 7o CA,1t+ AjBCDC, C I s Co A, + D,CCs+ A, ^ A, ' CD D A CmAC AB,+AB Ce BD,+ BlC ( A^,I, I' C + -S C A1; con,'at acd 9 cotined (1) et III) 7 notw otu - t tfeem- n^ t -elr-mAB eBC C1D -a It - ~ I ____~~~~~. NO

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 14-33 Image - Page 14 Plain Text - Page 14

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 14
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/26

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.