Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

2s7 x x2- 33 _ ---- + + * +-. - 4 o - 4- - - - + --- — a k., k~ k - Yc, 49 4^ -4 0 1t 1 1sCg l Yt 1 + 3f2 "+ i -o, |~, k1, Z~ k2z Z " + + + -. /,T, ZT Z Z --- -+ - ' L. - + ---o — XkI1 k T 14 (Lz dlinwnir'e, mdltzto-n ZeC e~izzatioruz- (A) 'ce~pc Imet ipa- ) ~ 1 ~ 1, ( i, c'akzWles are ceo Trrclti ptcaetai tctz 1 e'rizzmznee^ par'c- lea cjaltJie (6()),,raz p /ouklorv^; I c zj M,cc / 1A Qie tionzc (7 ), ce/ic Jon czflc ^c'c'Jbuit: r tiac/ztez'zenime t/ t Qe'w.,12. pcor p z20nL se rcoYoze dIonc 1 cif7r7tOLrZce'. (Vo;c. 1ivutC, avLs^e Acirnor k4Lton —u- cJtI ( 9 /J ( 'J. 4~14. j1 LLJ tc6/cop)aICb -(izd/oo a7 cc'^' tc-Zr ck_:. ||ict /6rcL Mat/,eeo', 'c,./. i z ne-r cnive' IZr/ ace d-'- JeconL orz _L.tte pa' 'cp'cl ra rc, c/v| e71iaI zoer-4 efLc2T ec/ Je Je5 tUcp/ce- e e JL l, A l JQ 0) aX lT + b+C z2 +T2. |C' e1Zza tc or2 'ce r eZtze- Acoza6 pa'Twctnelbred a 'cAiictce'; l/e^o czondi t,nC tz m/J ee4 e/ r z7 M/oi JoruL Cc a -J cofl tl k tccLj7. 1 J'tj -tTLdme - l ^U'c ei>/louiW c iZ-L ad A gj'caTncL r'zom Lce- c/p'cop Ce/ta ( Vc. ^oUcr dC Ac P Cccsi, ~brme 63); rroz ne ciferonc daqcmzrzeed e +1 -twva dea.-, I -Opm1ien- z LX #CLa) Jo1 ' orplye- ACOLrUt1 — pa4(x0 n't- AVZlci patt 2 f Icc-C:lt1, U tXL |I4|ue- -'$_ 'a 3'LcclJe paj p;rQA ' Op p2a. t e' J4C0, / % f ito, <JrflL A1 caootorrTzeed cizL ponint /?Xe<, on' a_^ U coriDlt-o- (1) a + + cY +c- + cT-a.i X1 tI 1 on, Pe coo'Z orewc- e-L1uL bo/cnftJerc —.(0) AXX + BY+C-Z + DT=c /, pa& ca)pJo2t k lai ivc (1); Ai Z-cooridovneaed JecorcLy d c&rrILneec pac. ejajai aI. Y, c- - T A B3 C D) C|2iirmhcori & }', c, d, eizu/ce- i e>-zzttzruzcc (1~) ezL (9~), pziz <pJj/ricnflT lere ind7icec 1, on Ztcoiizwe 7)oztvc- Eie~-w alcp'f ANJ;B-Y C DTZ 5) +- -- - -— + +Cc.tL tze U 'ac- c/ct. d t cotSLcne - o'ccLCe- pJa.^cfar -pax [Crcl cJ clcl^ d lr bcire'ct. )t~~~~~~~~~~ e e4~ Z..,o ik ordnrr i ph 3c, e~d/~l 2~. ^'5C6<:u. Pe. -pf d e- l p ei- '-tC rA2G'ra,L -p-,7 Ut- pi rJ b (rT 'p&' olmw [AecLic Joi le- /an. O r-xe(9I _ A-X+B3YCZ +T=-o; = — __- -- eZ 7- ';peei t dc.rvi, pa- to"A B p aitt A b ~ II Ieza etaiorL — i p/l (CP) t!d c. tpar ce-po L

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 254-273 Image - Page 254 Plain Text - Page 254

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 254
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/264

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.