Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

Jjct"eo,tC.. -',econrud oricbca- cLO-. t1Lca px'C 'Lcpp oct,X tLL. teLtac az c...c 4lUrl t Lec c - dlA calyTuLqb p~cr 'cdppcf.t aLZeC itZ'c/ce -it,ecorzJ o-rdce, lrcq-c1, paac wjr7/ppol' ^- YIcef riragce^ZUTL 7IZ /cZii ciLLLe d eCJ Jor77rrnTZc eJ Ie pc de a-e I a,? aice- Op-Jee —. cLi, AiJ) ~|-tLic > L tcfc d c. dL- cori d oi a rc.c C yIWji^t.iXujC,pa'c a 'a rd, fd. a Izrzi- iZaedc-.,' i?' oLcj c /e^ c/e- t ' e e elk e coCac- tC; L — ci pp/ 'cl C L cce:f. -rf ce... r I sfe;<?ini A ( O=<3 Z T, =,o } To o a- poz'c ptrL 1 -ccZ-, d cz;vce I 7aerLaL (2 f e-6): fX =oz zIL- a X -aY+b~ rc'=o( -Ta.7 oa eioc y p c'ir-ire -a ~eejL c- 7z- ecce- cB - C pa~ r 4ije1 cc') QaeJ'-o, o /caYt oe.ccp4< c ac/tccB /X- _Oc J Zc =e ~J T(c rf~) / _- ppfclY! p7cZ. Auoi~:,i,. 7=o, A;. o T a a+/ cT = -O (cx-o, OZ ax +d';+a"+c=o; i/e leZ tJodi se. corLfj-Zl e jc 'c A - ce A&-D; ca-. ACTt1e a (.~ ) a' -o,:b' _, '. e poiZnt C (X, =o, YO= o, =O), 7. pmoS.. I- o,-. oe.: 1/x + X"'Y-i+ c- + allT a,' onm e. iL iJe. confo nd./ r aCzp.- AP T rz- e t c-a oncZc zt (3) a'' a" (eJ condLiihoiLOi eizait~ 'empTipz'c, Z c-JommrrteL T) 'e -ra n zec oaumier-u- e F1 pol de l ac- A B C (liorzwVL 1l-r t ~tZt- at7 0 f crv ^cc r -Lb - L4Lcc it Cc <Tc-JL o'cdicc-^ COc T wAL 5 L r^- p c41>pj —Cp t -p tITu — itcaeU,e< $^tXc- (jr7cs poout ~e'/cac~ e-c-c ec Ccrjc-t net) e/ (I) a XL.Y-tZ C 2_o; F Iei ot0 n,- tc, ot. zMr rl'5+ct p++"'" =oae'. CALL| ' -9LC 'CctACfl 6c-:)trC, 52c a4.) e-.cc4x — p COC- 4 ag *ccp-Gt catn alUtv (J- -xK clm.m.;Z Jc{?TzL.<C Cen ^rzc^/-posAO'zC- -L ( l_ \ra '<S: trn ) I Ac onu le /, '^temievet Lce'Aae.i'-e "pourt Ze i'ce} dec YCAXccrlcea- - / Zey'u1 alrZ t2 c/ -. o t outliU / kr~c ar-3. 0(1 ) a- X-+:b Y c Z+ a T~=!o, A, L, a, `a, ct-Z^a dez7 ' e col zALrmt do-rrZeea., X it A ', C1 P,, fec72l 1- 'el'c^, ^ (1 / Y, 7J, T,), (X2. w2 / le- T ) e (i Z }! s I I ) Z T I 4 Idoarnee, necrpcc-7dJe. -..~i" 2orm 42.. 6 e/uS Ch, ecihd na Zoc' corc'lorcl.&OTcdtiTC pozzvc — ucze- c-c-..c-oni tc-/lYae'lr ce -2o c lryZawfc rt_ AIcapp*of a, Zr J1LC9Cc- (!)ro/ are A —lo ue LPe- A ec.ut7dr. (412j: a X+ -,+L. -Y + CZ17A + T, To tiifauticp'-iLrnec /ic-/efiJ 3 c-n-ic-u-c-cb )'B,r C, 3) d~o,-it r -ci c aici ri —e Ot-zn A n~ / - c-tZca - r -,oz eL A,*(AfT —2..p,,t 'Z B;e 'Zc.... L fiorcz. a,.i f t ie. tr'-t.dcb -A,'B eC, D, _- cojtjui T par- 'cap por -L u4' (, ) lcd -tX- czccut l qo.mL alfc-t! 7at7'g' 31 Cf'c a_'gk~zvfg ara~i,?~e,Ze Le'.rn flf z~l 3>Cl D C~i cON'rt3 t p t Ca — o ' z - zYe.c(I ), /7Co 1'- <foUanetl-lu3~ltl e oi orJ 'ccV-c-np/.....a,X,YX + h CY, j CZZ + Z + A T, T =, a 1 3 CY,+ 22 - T T3 _ O a LXXs, + b Y,,'eC Z + Z l T, T, - o,, A 7xs,4 + -b -Yi-c z 4C+ Z 1 T T4 a-, \ a XzX + C ZzZz + d T3T4- = o

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 254-273 Image - Page 254 Plain Text - Page 254

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 254
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/262

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.