Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

2o6 & cLLattiiL0) (1) pezlit 'c c.a ezcoreC — mrctLd cru - e ev;dcnce- po l, diL icri(3) (%ytZzQ) o a =(x tyy0+zzo) 333. (|cc Aet, Ca-nL cccc ta-rLL cL tn- pCtit cefe |-^ Sp1i, d1, ccrwC ceIrilzc/ eIo ieCTLn plaLctnjet arLz t (l;) pa) Ju0). ZI aize n- LId 't i-cc- a' ct-ccIrc1 [inyiLcn aP pcltl cctcl, (1) J<c'< (7) (xcx, t yy+ zz,) co 2 (c oc d +y (c f3 +Z rc y) (Xco d+y CO +ro ta y), i / o, L cardliorL_-. / ftCC Irt t~nd~ftr'orc — f/(l V6) ( t+}2t:Zxt3 Co) 0 = (z~,,y, Cet 1+ tZ y)i -x; / y ( i z, jon- i le cOc[onznee~-' Ji- P1oLL t den c rL~c-.. c-2TTmLAO,Le b-; prL 1pOLLRCaiL az aLeZjLe- lcl Z~npctc^rcyJOcL f u'ao(5) cixc>C + y CA 'f r y =Y Z PCJ +C c- +y+. 3.i, 11|, ' e~ coo' te6.te~c) *n lC;a ioou dcotn C de zdzLa'en ce' Itefc Jl&rrz;lnt: Lion an A B-C. / cc B C: X xC co oL t y C + z (, Co d, C(i) I ^cc CA: Y.= x C P / y,t+ co p =o, </ \( ' Z (3)7 ) PI /eJ izanltrc" XI Y, Z e'Conf acppaccf- l\c coodorLToc_ UCGbzclic-re2 3 p1'3eCJiq<ezctL- dJi point 1K oJ' i,, ' t ie n r t zw~Z aCOL-o 'Z ilnet coCn- ceC eJie ( Ti /zLac.LnJ.p tvI.ecc'rcn/. | nLC Ij Loo'dtosI2nee cLarL'rjicraea J/.bcer2z.^^ c-', (3 57./ on. -z 'catcaoz2 -(3) X,+yc -=,L; oIL a- lie rtecL, J cnreXl 5Y, % ~ Z L cLaLtor-L c ql i iZOc J azlozJ c.v'ccbel.' l-'i / terz a-eJiartjn - pa.'c. A, CB.. /(J arnglic cibCh'iciC 'oe'cc.n^ oz,<a / - A c, e,,cd +., 3, c'o,+ <o. (, Co y., 4 - Co B = C<r y c c + oL, C* ^ o,+ C2j I& o - <^ C c " oi p A + G~ < i < A -h C < (+, |,oLCo,;d2;,; P i y; y, Yt y,C/'tmirnznent iCJ pogi JecL cjanl, cercc/C BC,C A, AB; e4 noziO '.zpp7craeor/ ctze ce5,.ole /C otJ c'AJnt &I apce&. /a. 'cejai. CorLtnzre-,va,'L!o cont4bttz tioa-T dal' kZinjfl^ p/?oCC: y. iL OILnL( a =C O 13S <c - Co P Cas y: e 2 = c> y <_z -l /< y,, c t c = e olc^ 13 - Cq OL CWe A Y2 P 1 b C '? < a, =- C c y -1 <C'y J, = c y Cod -a Coyz C"y c C = aLt o ~ Co — 2oLzc p,C c aC=ar, cn y _ t- C, o b2 Co oy,,oC - C-y Ccl oC, C~ co, Cc iI - Ce oL o PI j; on. a4t11,erL. otzl'L: (6) t.3;A = a a+t a4,,; 2B =2 kb~ +Lb,;C =. ~c-2 - (C JL 7<IL e.o-zz /c,C.juaLtnozj (1) pa. cac'/o/LLe a- X yYx Z, onr toLVce, paerempL I

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 194-213 Image - Page 194 Plain Text - Page 194

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 194
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/213

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.