Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

KI- T! — ^ -^ ' _ ^ ac -aL a b c -i A A' A" A B' B' C c' '" -D <i n i/zn roe- gi 7 at gAle l i2- e a, b,c, R ns iro nee/jZ ((-iien ), *,n o. d imnltt-ro ckrcia otte. ^icae-: /rs-CC ~o ' Cl d i el/ ~iit^c CLI.'~c t.' sUlipil ttt? 9 i-t uat- 2-junac C- (S3 i -o!trtd* f- aA Ce^i - -Oeen uni-naduc- ~ p Ton-C, t<cn^z t d i^ eJ XvJ 'cclxrtL>x^'t:^<' -: ) 4 C c, =: B D, C'c' _B'D, CC' B"CD; j...IA *-. 1 zv et rut. 'CC...:16. a. tt L C C' C" C C- ASI ('i) a - b —,, R.=.2 9 B 3 D D2...... L I.z1 ^ * c.Cc. ta-i m.Loll ~... dl z tt at t C-tL- - p. — ce,7jce.^ C7. 'i Ion, eap'c-imrLe,/7'uen pjnd. pafb1JdLL -p2t: r/'. rennre (1) cYTL7f0 t 312, LomSZ lcfge a 5phaG- (2), lnt^^ e-J-/-":, Z'.4. I2 9. {'" ' 1. ~, c a tu+- o- T c -1 =O, ||) + v + v! =; I,,, -,.,4c ld 'fa' I,, ed eqf-L-tt.nT (8) dc-L-mzne 1^ cerltez dz 3plfc.-; 3econdc *rprtedenS tuneG cetiL/e^- pane- T iuL e e- cic2rn & Ja^W 1 -tL 'I 7n - I ~ie cz t- u xLt.: <; tioZttL- Era rtl, e- d<LZ cccl ir doirLi'ce 6nJ t 'irti L et, enC coPC4nrt Pf C, 00i0c tIa Z_-: (90) -Ll 'rVB -a- _. I II[ o, ^^ s drt t C~nlxe 1t pc k. tS ~ < 3-4 ' 3/5. | j ent- C(\0^ IV iOf ), ( II,,Y ^ t) CdS roui-Le7t Al ^ st: opia-n cl~ Det /^.> I'oi^ 7 'nicr ecoi-;. c.o.lor u5P..' ' a 7"~P f~torTtG "^ padj~nt pa'c cevte drwtl T, erO/et' c.Vi -r )4 (/ ~ ~ ~T. + m-o v. -. w 4- -m.......W.. T-rr"L+ T. I T-t- rL2 pT -tLT+ mt |C.@f td-p' 1 e- lepdn P' e- f, L.;leutc a. (52) f ( '., VI, (,)., o,, f ( f:,, t,,.', r ) =.. -c\.^t dorzrrzc' _. ati Z z i e J a, tft 0itT L~J coronneeo CY " t, J een.., r +.....2 ^. a. Uec... (nII - I TT ni Z) J r ez V, fZ5c (1); l ve dcedIi 1 / tit t JC CCJ -,,L: dan,3 fZLtafb r )-z_ 2. Po f ('ml, u + m u o,,, + n^ %4, In ~ t + m 2 cM, m, r: +.m ' 1)I —2^.; jf 1ff au~t en vcel~sppsp~nb...la f 2tr- iL fGtJ- -: ('S ) 2 f (u wv e t% wr,)+ m T fs,,,, a + gotr. $? f i)4,o T ).= o, \^_ ^/,7 a u2w ze. l ~jucwro (L?) O.J/ GtZ- Of.'w>/Zd- 2.).,ad Jitil a. M uc ri^r lh l e 2 nan ai2...... Du,.,^ 'i it. Jp..e.!. i fJIe pla, Po tiZ~cSi. I_,/f-, e., d..t- f (l to -,: I =' )^ f "9' -, i cqtt i (2) Ftrt. Lnea^ L _I ni L- -.-..oI I

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 174-193 Image - Page 174 Plain Text - Page 174

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 174
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/200

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.