Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

.I-, (c licoij plarr t>e coup t ent CaL- inotr- itn2j9le- ~l, *oii uzt ie cr-nlce de. la.>,ipe.;l!f -- R -00 -; i c07z~~griz t'e L- 9. ^Je e Lrozzoet:tzaz- mramenrej-, a — lZ?- p'oDcirae de. rrze- 7 ne 5.SLG resuf- a^ PX-uctt^ zrtopc~c~.l cflze t.eyitdaL — J tLe^ opharf peu=l tor.ize o: e er-z -n2rr-rj a e?,'C m e-' ' C(12 ( +o oue) r - 2, a 2 C+2x x + )r x cayJ 2 liy y a + h y + 2 cz A- =,; (13) /X( <%tc< 'cCbxtnt'Lt3.vc) (: ' + 2- a +-b-y + 2cz ct - = <or' lque-, Lanm e-ra c di we d ucej a Exlricitl t "I I-ualh~irLo - e f4 3pheCe l-e dfiEn- 5en Jol gym. L (13), irP/te faxde- 6. m e en ejer ie co oorne ee Ji. cenefE el- C,42 veZ-.* 0tz'- ceka —, on- crnpt-ete j le rayirCj cjxt s^C, f, y, Z - o re a- (14) ( )t (y+)2t(z+-c)= a+-1C; le Ct orfl.^nea l^ ceZZee Mon:C aii'Le/nr ( —a,- I,-c); b iP*Ln on eilR2: a2+b + C2- d 285<%?c. ~oll^ - - z^. W l.. ---^^?^'.z- a ^.t — p p-e.. 288~~~. _ _ - g y^..' ' ':',0.1)0 (x- -+ y'+ z2 + 'yz c( yz- 'f-t C co to + x 'c-yx r+ a xt y + 'r c ++- o=o e c- m ~l ertZew - 'i, 128 r01 @ ane- ienu -- At S ce. pozl a. La,.pA'c<L., C 1<L cezriJe i eX~reior7 - (16) -rep'ereni I~L-aicEnHe T "z e/ /__ 9' -s - c yCM-K;" c MTx,,0 '^ (X. C1-..- ~ +T Go dX2 pr:-m'lc' m-L]fr ^ < L ^lA;~' ucr rp f runc/ -p ^cL/, SL ff ^c0O'ifrrecc p,, z. ei t rpoint qlltcontc- M dc L e^pofCe,.cepIcccrtt Lt.C<X *<Cv 2. ^- {cirrttc- m cc c pa^t &_ ^ tolife-'; cc "~C_.e6 @ CDOII < tnC9le J-c c '[cri ~> <<? vactDLSt ^ fontt sftt1pp< '~eJ/^u-^ a 'i-Ti-t)e-' -, evrv^- -- (16) ozz e. l,, em lc < I eaZlo. z-i (1), rep'c eni e rl 'n z alCpeO!- ell f (3r x ciuVCpoc'nl (ro, m -). 4. c 'a pot r _ cpS. ler f ~,~~-,p ofe ^ti - (i, I.).,s rC cuie/~^ *Az' i- f Wt'S 3M ca-incieCt al 2X jp^re-f le,pe7n'tem c rnelre- dc _.ll.r.i-nz P-)0ze-c'cne1Le 1rL;i, k ia~rer XO e. L L d.ezI - rc de pden' pa1a f) prln- -,C ca. 9-L. eer-ber-c,^d'c- c'c pc rOjI7lam.. t-.. j4lmotL rL -. '- c de.Pr.. e. "pz mz -.-SA ~ekonarzalJbia a e.o ra- de/ 1 e ne rnar tz - lzz C.. golfn..t,,'4?89. Xi.wScfta~~^ 'Wlo^Wy' tti.pt-a- eE\ trL- cx fet:. f,^OL si f ftvean-J j n.;;z.'-r, c'rz //.v', '<. Pt - J a -plc p ftn Ae x ~7, el- t ec r<c [ ohe - Je

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 174-193 Image - Page 174 Plain Text - Page 174

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 174
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/185

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.