Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

2632 it TL widzJeief: f w mg porlznz. an- l ta / dCactlso wj p. aou lomolictze ln arizt la- xecorzzIie-? Jc1 /It1 LLCWs VutJerTUm L orl- mern- ^6ae-, oiL r /V- (i jC.oleir-eb cG. rorLe. f([ 81 ). 1 oEu it'U C- L dUleui, a -;o a Roro g oToL pr4qlCiL Ot{ C<t- U i0 etv- f dore,;f fta t i < ufii crIc epoailitb 1e1 J/ D mu l Lttc&- e. iL-n rLL, conmcl Lnkz. t tLn oC. ilwo ^tou A p %irP b JTOTiHa e ft f; 7 n tl oef/, tmU p & C-t Jn looLb v t — d< I' zrL t n t ef i r p'vcfi co r;pLq2- c (~a, ), (`flb'. C.. 19 01'b -1;R MOrLo tLC i I -t S miigUL- Gt, Cerr9t 4,- 4Vjvw in oei t', Ac(Q I( rh. I rTJ= e2 / point I t c-pjcet t ccnC de< C'. iaut.C 3. - btco/ cotaoCc c (A, a'), (bjb), (ic') ^orit c.n-.-,.OUtL^.u- t,:L?,, Lf.corn- 4 ceO tx PoL-tn 0n^ uurc^ t? *cLVLmo- pp<c'& ei w xCcrrLtT L cv &X AA c cc&L dJ <j t poLrL 1 rrof % 3Ci-c TLC,1Ler7 o Lt-.3 Uj -w-o^ e ' -i- r eLL<o 1m orn7..cii9rC4t /tcU Cea+iir- IJomoc zprap/ tiA ced.oxl en- rLn /oct?rz-l ior4f ic w rL a - ecu rct uIVc wvez- tznr.cj A0c ^ 1 2el ue4 c st e Jz ivnnct- id^' | cA!i<zz enTi XLoraitce'oncv< el ont:.e^ouL - pa'c( ui AUX tucrt L 20 e mn Aixv - fai cba, Gtl irtOo tlton / cC tr ~doWc- J~lectc p^xria ^^oi Cu r. ' ^ d$iuo. fpaxr d~Lx-C, ~E et F, CocnwLri mnrt vwctrruc q ezA Xtw~ ccLad-t rL f e avtce0 ctur e (A,A), (B,B') -....... JI I ct 1 2 S 'Tu x L iiUtAc (tdiE.,F), i-D M c-M' t1c ixpclu, irwt~') ae '; -'i- ' - x=o, (c') -- (=o, Jr I pS t' I dtf ttrZ^4 ek etpf c p Sn /J/aciVJ diz ~e/torutZ-7U j ic-r in5 ci! f n-,-^tw c,e0 tex cr aarLo zeniL, crae leaO y xi~orl. eIl- bcoiit^C- c6L1/J2L III M |U^ Ltttb:-rn. in<^|LUftu no c I} (1 (A'j M - i' ME= \ (B1) X -L'X=o, (C) M-cRX'=. i5 \ - c(i/lot e~Xptime'onIY que. c ' Art' coclp/74 ocrmenrt zme -- inVotZ~otL, crz A azzraan anaIiC mzaemen7 z /l 'copicte& (t3 ) J/ ) QC-<L); ca. d. qu no" ec;r'ctoni- qit. 'iextO L tine coup/le- a I,., s \) 'M-Xy - \(F) M - 'X'=o, |I ef, qzze lieo cot coitLp) ( A,f A), (3, 3') C, (CC', Joent cojtijJ 7za 'c4ppo'ct tL.Jtcwn CE, F) e iecn/ccsytelm~e |O|nZL, r /e4ritee Wr -pCuxnI6 leoVL bC_ de, r/ n ifo /ui 0 | d, ca C ai -ceeiuC L nL- (8) ll c) 5) / ed conc tiottL^ —1ou'c it l t/ ctc coitl/Pe (A A'), (Bu ') C / CJ,c ' )/m - I| eclv eiiiebzbnen zIL-r o teOre7ZC iacvcmor7aie- avec- / co Pei, (IE ), / eat-:

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 154-173 Image - Page 154 Plain Text - Page 154

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 154
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/169

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.