Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

s,' y' t.X J. - C t - poi t apac c /a Icf (x, y,-)=J, Zct W/Ne o M pJIr/. b0/le/ cnzMpea a -a dcCdye. -.J/a ij- (,X ] ) c, L, O o e ctd i iC4~C-' -i CC. '5ilta/cac-, p/i'd-, L nc X cJ! ai;c'El^aLi cc 6 C c z c /ncttjciort e'Ar ein aJU/ciaf$ d rozzcs ti Jo/Znt4fimcj, di4n4cAzE c e/ e'eS I&e.- ('e/z-iaowp'rn~ccz, fzl /t.-tz fue- (/Zlet /eojcriA ~/c cc/e~i~z-t ao (.,,c C:, ii /zio,. (I -.:c,o/ d'A.,,n Ljc. ~Ln WJ~~/C., Cn-L UttC 6c/i7L4 -[OJL^, /a-'c "f Loj9L r G.CpJe. fu/ ~t/C C CJ t pet-u/ dc 'e.t U^'c - adc' ciec i-~- ic[e- p'r epice i e 7)c' paI'm e/7W>1 oL — m AKor rcf /; v JC^i/ alrm C tn -; a C. cnc~cv d7Ztczi/ e & re — tcduce^ a. w ternz k /dme-e-'cLpz JariIdZ- L/ I)7tIn^>-~ ^,4~tei'cdf ec~e r/4L -/JO/I (iJ rI ircTc - l- (C/I- iLm-e// /i'tLLce i OLLc Co/C7rtC ICZLJ. 1 Deaa> e5vuafirn1 dcA zc./cnme.. jc& o le'c6 c/'i d uc.- ia 6ice- tr - zi,,e- cou0'c&72. JOu'L c7. ^ 'k ' /c- l ea-L iaCK le C Lu C ea cowc/I. JLV turbf p/$zi a/ C LkS^-Z,7-, c IZ'L Xy> ) L/ -uZZ/" a c/ nwe.'c.7 t. cOOtC Onrur w, x, o(Z i c(ZZ/Ae ISC dJeLwa^ c4ttajUr u ). /1, /taC- CLcCr7i/J/Z OLL c'i/i t7e~y,pais X^, 6tZ' LcencL 9 ezx ei fux - i Ia - cL,$mL () f (jY,Z)=o, (, (Y.Z) o, CC- Je La I IS C/IL 'Zi-i dL e C~ tYiXCic p't airb d4 LzL coL.ie -.taf te z /Ti _^d ^*/ el J. n-Z.edd..' Joaliuanc [omntru1e4 u, %flattonA_ C ():d.iCn-vc /c&-i & e - (o); con.c- le.c - xacc:c/C.. 'd C -- ie pa' i S. c$d uJnoncL-^ C2) /jae>.er' p/.a- S ccu/~-A en J/ef rii c cti//eVc4 eCUCe 2c/f'eS.crz/ kLii 1 ci r j!n 6i/ i-nf9ve,fz c_,r uepacantl- a c. L..ac,. -ke 'tL lc lje fI l- al-.3 x; daxrc cef mtre d- pcaISa c o2 ne r/co.didec c -L ^ z- a n 'jc<.n apc7c'cle4rL de,czc'a'd. ' ' '-ed iz -y=o. /X neacni Cti~-'' " 7 ' Z!i 'C,, 6.l -OJCYJ7fCZ atua-j vn-c.S YtkaG ryJfdcee LJ'co Jcet.Lk 6> &OLU!CIU~J /LICr{C/7LJeO/7v (' 1.I ' e / c / b. X~~~LnviZ dont^~~~.?k6t~/ -e e/- cj;XWi '.ortcc. t.. e.L//I,/Cd u2 u.. /en-,s. 3J l. b e.lthLrf., r.6tf '-,.C(L.) tmutfh.mTr r t.. e. poLTbc -.!70 (9 C ~2''i-.p-'' I 6jitU- f dcLrL- IS i {e7lanii Le Z4c^<ayd aC- I a-/7- - ot-z iLj- C/I? 1/C C Ia/OTL-,po / d'f rut>~. w cf -d4i I*u /tio/is 1;vd CJCiWcT/L a Int/ i;L CCui/ onL/I poeu Idedi c /^ unfi/jCoSn/C /eap P/c1J~ vrrti/~xCIteJOd7 erzcc'zdce<zso; Zp i e/Ie47I ccS / /eer /o fo-z4 c/tawUeet Jont ed coEC p/ Lutm jM to'cLcAaeut ccte pencotr ces pg rie^ Jped mra punt U s2ra ec mnu clid pfs ndc corL0zzefD;^ pac CxeCT///O? oa~1 —a.onc 7pjI a =<, y-b =- -o z - c:,= J oc —3=o, ~-] =o, -~-o. a, DLc Mlon. J 'ri-ofa /c c (ie r'-rcaduor zr e-L (e/E?-CZecuit7 // L 'iCALn ru L^ /pO/-L i di-m t.tci Ca2CcL CCo -/fl - C$ ucL.9 Ace...s.Z.X~~.ffias_~ —mss-~~-PUPIW~,>,> oaB c

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages #1-20 Image - Page #1 Plain Text - Page #1

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page viewer.nopagenum
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/15

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.