Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

-4, koa;ic u~ D, lrL oLenA eble, e,.c a../? qr -/ek co. d f- n on, o i,^..~ -toj[L f$.cu 2) -,on5.u. (Q).wer. c(5 (~a&rz. cbot4 )!'coi6 a>xe-cv'Z<ccluinjia-cri OCx Oy, 0z, L)on defincc a L Trc po,. iL. 74 jaic- ~a. Jcz's'/~ rw O r 4 1- t 'p/ ep inf avcc- p -/i ZO xr ece, a, c Ipa ' pa. la;'~y/ I Izcj 0 ( tt 'teAcayoi LCc-c-' OM~ < OZ- lcWJ I zanlitO Z; </cV 0, ionr zu 0 > 1' | __ --- ___^ o r 4o^>rLt 4 - > 13LfL 1'Z3LL j-tt 2L.tV Lr9t 0 5 / lard. /, '''i.O. '/.,a0- qe- e 'xilern..",cd "C "t /oo nn/e — 'aec Oati neC ict&l 0~~~~~/U ~~~~,.. / / ~7, _e e-y) d de- t-xe_ zox —,, tn~y ten O q _- Y trt.0; { X-_T ' It-UL t) Cc3.: y=_ r tn-..r ~c',, 9 rv net -t ic- a cU'nxa 'f r, adi a_ c.if fcu i.V6Icjja&&^r c -tI eta C - I O/'JScnecC Y, T1 O1 - iC Ui irtL- lzT. dcc cr i-V.ZrcUorC. t18 tI qui f-loiPz~~everi^ e fa'Ot7m ~eJ 6 t -e^y CZ-.. tn =~mi^-uH p c it rLtrL poitn l- aL ii2 de c/Oo oncc Y, <q', I. O* (on.JUrL^r CnwcUC e COtWI J aet YeC/lnru-/LLJoC~) 0 fX, Oy, Oz 01n7 pel'! dcur..Zl - /17ZL /oinl pUJ' lrZtrzce MP i'i.i M atD~t /4r-L frixe t t0y putw-ct — p'l> Uo'ca ruck^- p -foginw (Pox-cfS y OV=~) >r'-). p ica P c. 1? i.-Jp'roeclz/ -JWrt ' - Z//r4TL - i-/c; 4-6 aurzlt47in Z% 7, f(f ruo & /Ke^f /C- c o6 t'lorn- C unhunrce zL- - Lte- L0u ir- r..... _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I ' '/. p e ce4 /et4 'Jc'iL, aIcnnrci-r pac'C c1'/C irz-fecitrCor LC - o T - i- firnl uol tit. 2C)p, OW/a cinf!cann'c agn pot'n'i coamrice- d-i z - c / L ein c/2earec u- tric /^ci ~d Ce-cc xJutic ced;!e/^ totL.a/ra ct ie'c(Q, 7 tuz?cic'm'o rzem g^~~~~~~~~~~ o sszate 3meru-^ -7... I.1.... omn- ire e'nxer. i/e - coo'c-lodzee_ CuWfi/.i..t, no. i::- ct'con i: '.' I~ ~.C<<^ Coo'JrontriC pac'Lteer; lce.tL-.L ~ — eO c dCa(& wc a)eAort'tiz L (ere5 tcne ntizd; ae~~~~~~~~~~~~paiI3enft-. d ao-a- i MP c'q'o tm~ ia~i 1" 1S~~R_ co,,do,,k~~~,R~i ~ vue"Ic.-OZ 6 Ue e.,r — j o rt -t~i d j ap er' rz'c-e- eZ btisaL' Cij/onT Y; le conezJ Jd'c1 i)t cal.! /f.t'C dre o-rrLrim Wz L ' ei OX czl ont al a ll e-a.cz- Jonme- Ce: 0; ci cn_/rL,:e1Zn/Oa.rpa4JLa^n par /are OT c9 /e/TnzL -1a /c Iynz cp avcLC- i o jalL /:D O-x.. Cro'z y'ue ccd baou t c e l f 7ce- jC cgozpen'f oti'oyatrzime-z,'j a ap am e/-c. r, 0, C', -oni le- coorm onZLzeCLcU t /r'qiu^, 1 9 di po(i/c /rcf icL e ~7 v p o <e coo<^?otl^^Ctj6-0r d e Cg 1L 7oz W-f-d e 1 u'cfizced JonWticz al eee fi'L t 1-bro7) -n Irz9 - hirZ eC - de -zay-or r'; des pLa w-/ n la a /cvlc /a — ^J ieaj CLI? ccc lj ft C -/e f a 2%^7 fz- < O X-; cnelfn, A'L /.-1c /0nctt )eyO i-e, 0^ e'Z j-cjn.a i-iZ ac UL-/~2U o. 0ty. 1/ci c'_czeOnca

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages #1-20 Image - Page #1 Plain Text - Page #1

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page viewer.nopagenum
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/11

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.