Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

e/L c'c() / Wo neeL e /'C a elci K et, J it 1) M X 4 XY+ PZ + -QT -o; i/ zecilp.c lie e4/ etIe, c-ac ie;u4l /e rc zrncer, and!e77thcT- (1), X, Y,, Z,,I T z.. v - "', c -,3) C(Pf c/7ici-r entcane.. dea la- ffc CUxtVtO cL Ltr- prL jc4Xtt >xc Kcov potrtb (X,,Y, %,,T?,,X, Y%, Z,, T,), (.X,3,3,z,.T3) eA X Y Z T BQ(2) 0 X, Y, Z1 T. - Y 2 2Z T, C ell3 3 T C;.~ Y~ Z' T ' rt. ca7itiao.ui dCYLe p/lrJ pTaIanl pa/)CtJ crrt,czc ta hoat - bttezie,. de fef'c encer -t onlZ re pcdibemcrLl aIe l /a /cmrc I o.inircl A); NY + P Z - Q T = o, a CO'i.-tW (A) Yo, Z o, T =o, (3)| Mtt (B):MX+- PZ + 49T = - o, O m-)o: (c) X- o, Z=,, T = o, -Dntmcf (tC):MXt NT+VYQTo fC 1 (2) (C) r =oN -=o T =-o, t,ol ict (D)): MX —Y + Pz. (D) X=o, Y o, Z =o. d-rz c~et, l eg~tallon jar r L.t, l e ao m Tn epvtons ae- Cc — -jo7jl~T 'zzelle' (fncjli, I7ju ri LL plain /da njJdrd / e AJjmrny mel A -ivd c/ce I 'cree- i ar le4 coCcYirLn7e/ 'jec-c( rr, /eS/ze/i/(l,.onti X-=o Z o,T-o;. on7-..... /5k?. lrze rol.-e e t d i'crte.- pa'c Ies e> zafi i cn c c/o d pnL./an; dac i-c ti exs, e- jt - ( -X +NY+1-P-Z T + Q -, ie~rRwer??r-dM uLpz doit-M. eafutO7Ln CTheca d 4 /I, r rpaZa.JtLW pa celdC- c '/ti cof (6) (0X+NY+PFz+Qr) +k( CMiX+N',-+r, Z+QT)=o, k elanzl zne conitanle ac/ica,.ze_-: ci e^aJltrut-i/.)cih a La-,tc^ d,z/aeLce tec/ 'eCnce ldomtZ rcLdpe4veme-nl L - Z o Yo Yo, (AB) (Ac) \ T; ) t -; (=o; l (DB) Z ^(at /.tcYlc A?, pa,. c.xi plp/,.i l/ nbaczcicchc- ce- diex c JiL(u DAB e7 CAB, c.c./. Z = cl- T=0', '-C Zi7oTL c'fneC'Cl. o7 plan.- i pci.anz pal- /eunzr id c/ eci c/iete/c -j eceLrcncc, corzn: ptdlac (AB) Z T = BC) X- k T =-o, c)" (A- C) Yf T=o, (CD) X+ kYo, AD) Y+ k -=o) (DB) X+k To; k /,dCtje Zt, ioc, l'tz zne /c, retd LnZ{ a. 'cS.i/iivcc..;.~la'rze, ~,,,tmi, d / II~ L.... 153. co-Clcn.i. cc&cV on4ruc^ ctelct tze, X,Y,ZT, x,. tr oL pino-zCiot'crtF r eizfi/ we ett.zar- cal - c c/:' (9) m X - L y +- p Z- co,+r_-Vt>'= H-. r'rela'Lo~r.J7rzn Pczl-.~ Je 1olZnrw' Ji u-l. -Olc 1 pa'daminACa ifc rce'etence- JonI adl/on A LH B1H 1 c '1 DlH -1 ~~~~~rrA, 3, c,, Jo are, f A e. z Ked. rer. - pete do- az,: reA,&, C, ID,.,ort/ Sie alced c/ed /~?ed1 el- 1K ic-si te~srnre l- d cd cc,- ae 'L#'c- /rz jre;az ( I C z

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 94-113 Image - Page 94 Plain Text - Page 94

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 94
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/101

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.