Principia mathematica, by Alfred North Whitehead ... and Bertrand Russell.

68 INTRODUCTION [CHAP. II In spite of the contradictions which result from unnoticed typical ambiguity, it is not desirable to avoid words and symbols which have typical ambiguity. Such words and symbols embrace practically all the ideas with which mathematics and mathematical logic are concerned: the systematic ambiguity is the result of a systematic analogy. That is to say, in almost all the reasonings which constitute mathematics and mathematical logic, we are using ideas which may receive any one of an infinite number of different typical determinations, any one of which leaves the reasoning valid. Thus by employing typically ambiguous words and symbols, we are able to make one chain of reasoning applicable to any one of an infinite number of different cases, which would not be possible if we were to forego the use of typically ambiguous words and symbols. Among propositions wholly expressed in terms of typically ambiguous notions practically the only ones which may differ, in respect of truth or falsehood, according to the typical determination which they receive, are existence-theorems. If we assume that the total number of individuals is n, then the total number of classes of individuals is 2", the total number of classes of classes of individuals is 22", and so on. Here n may be either finite or infinite, and in either case 2" >n. Thus cardinals greater than n but not greater than 2" exist as applied to classes,but not as applied to classes of individuals, so that whatever may be supposed to be the number of individuals, there will be existence-theorems which hold for higher types but not for lower types. Even here, however, so long as the number of individuals is not asserted, but is merely assumed hypothetically, we may replace the type of individuals by any other type, provided we make a corresponding change in all the other types occurring in the same context. That' is, we may give the name "relative individuals" to the members of an arbitrarily chosen type r, and the name "relative classes of individuals" to classes of "relative individuals," and so on. Thus so long as only hypotheticals are concerned, in which existence-theorems for one type are shown to be implied by existence-theorems for another, only relative types are relevant even in existence-theorems. This applies also to cases where the hypothesis (and therefore the conclusion) is asserted, provided the assertion holds for any type, however chosen. For example, any type has at least one member; hence any type which consists of classes, of whatever order, has at least two members. But the further pursuit of these topics must be left to the body of the work.

/ 696
Pages

Actions

file_download Download Options Download this page PDF - Pages 59-78 Image - Page 59 Plain Text - Page 59

About this Item

Title
Principia mathematica, by Alfred North Whitehead ... and Bertrand Russell.
Author
Whitehead, Alfred North, 1861-1947.
Canvas
Page 59
Publication
Cambridge,: University Press,
1910-
Subject terms
Mathematics
Mathematics -- Philosophy
Logic, Symbolic and mathematical

Technical Details

Link to this Item
https://name.umdl.umich.edu/aat3201.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/aat3201.0001.001/90

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:aat3201.0001.001

Cite this Item

Full citation
"Principia mathematica, by Alfred North Whitehead ... and Bertrand Russell." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/aat3201.0001.001. University of Michigan Library Digital Collections. Accessed June 24, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.