Principia mathematica, by Alfred North Whitehead ... and Bertrand Russell.

SECTION B] THE AXIOM OF REDUCIBILITY 169 It is unnecessary, in practice, to know what objects belong to the lowest type, or even whether the lowest type of variable occurring in a given context is that of individuals or some other. For in practice only the relative types of variables are relevant; thus the lowest type occurring in a given context may be called that of individuals, so far as that context is concerned. It follows that the above account of individuals is not essential to the truth of what follows; all that is essential is the way in which other types are generated from individuals, however the type of individuals may be constituted. By applying the process of generalization to individuals occurring in elementary propositions, we obtain new propositions. The legitimacy of this process requires only that no individuals should be propositions. That this is so, is to be secured by the meaning we give to the word individual. We may explain an individual as something which exists on its own account; it is then obviously not a proposition, since propositions, as explained in Chapter II of the Introduction (p. 46), are incomplete symbols, having no meaning except in use. Hence in applying the process of generalization to individuals we run no risk of incurring reflexive fallacies. We will give the name of first-order propositions to such as contain one or more apparent variables whose possible values are individuals, but contain no other apparent variables. First-order propositions are not all of the same type, since, as was explained in *9, two propositions which do not contain the same number of apparent variables cannot be of the same type. But owing to the systematic ambiguity of negation and disjunction, their differences of type may usually be ignored in practice. No reflexive fallacies will result, since no first-order proposition involves any totality except that of individuals. Let us denote by "'! " or "'! (, y)" or etc. an elementary function whose argument or arguments are individual. We will call such a function a predicative function of an individual. Such functions, together with those derived from them by generalization, will be called first-order functions. In practice we may without risk of reflexive fallacies treat first-order functions as a type, since the only totality they involve is that of individuals, and, by means of the systematic ambiguity of negation and disjunction, any function of a first-order function which will concern us will be significant whatever first-order function is taken as argument, provided the right meanings are given to the negations and disjunctions involved. For the sake of clearness, we will repeat in somewhat different terms our account of what is meant by a first-order function. Let us give the name of matrix to any function, of however many variables, which does not involve any apparent variables. Then any possible function other than a matrix is derived from a matrix by means of generalization, i.e. by considering the proposition which asserts that the function in question is true with all

/ 696
Pages

Actions

file_download Download Options Download this page PDF - Pages 159-178 Image - Page 159 Plain Text - Page 159

About this Item

Title
Principia mathematica, by Alfred North Whitehead ... and Bertrand Russell.
Author
Whitehead, Alfred North, 1861-1947.
Canvas
Page 159
Publication
Cambridge,: University Press,
1910-
Subject terms
Mathematics
Mathematics -- Philosophy
Logic, Symbolic and mathematical

Technical Details

Link to this Item
https://name.umdl.umich.edu/aat3201.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/aat3201.0001.001/191

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:aat3201.0001.001

Cite this Item

Full citation
"Principia mathematica, by Alfred North Whitehead ... and Bertrand Russell." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/aat3201.0001.001. University of Michigan Library Digital Collections. Accessed June 24, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.