An introduction to projective geometry and its applications; an analytic and synthetic treatment, by Arnold Emch ...

266 INDEX. PAGE Projective properties of the circle.................................. 35 ranges and pencils.................................. 5 5, 30 theorems, statical proofs of.............................. 220 transformations of the plane............................. 59 transformations of the points of a straight line.............. 5 Quadrilateral.................................................... 26 Quadruple, Steinerian........................................... 203 Rabattem ent................................................... 77 Realization of collineations by linkages............................. 242 Reciprocal polars.......................................... 123 Reciprocal transformation...................................... I23, I26 Rectangular pair of an involution................................... 9 Reye...................................................... 5, 6, 92 Reve's configuration.................................. 86 R itter, H....................................................... 257 R itter, W.................................................. 228, 229 R oberts......................................................... 242 R otation........................................................ 59 Rotation., 59 R otator......................................................... 251 Salm on....................................................... 25, I35 Scheiner's pantograph........................................... 250 Self-polar triangle............................................. 42, I03 Sim ilitude....................................................... 52 Special cases of central projection.................................. 51 Special constructions of conics by central projection and parallel projection 146 Statical proofs or some projective theorems......................... 220 Steiner..................................... 5, 22, 92, 85, 203 Steinerian quadruple......................................... 203 Steinerian transformation.......................................... 85 Steiner's theorem................................................ I37 Stress ellipse.................................................... 229 Stresses in a plane..................................... 223 Sylvester........................................................ 242 Sylvester's pantograph........................................... 249 Symmetry....................................................... 56 Tangent and polar............................................... 8 Tangents from a point to a conic.................................. 163 T aylor.......................................................... 45

/ 281
Pages

Actions

file_download Download Options Download this page PDF - Pages 250- Image - Page #261 Plain Text - Page #261

About this Item

Title
An introduction to projective geometry and its applications; an analytic and synthetic treatment, by Arnold Emch ...
Author
Emch, Arnold, b. 1871.
Canvas
Page 250
Publication
New York,: J. Wiley & sons; [etc., etc.]
1905.
Subject terms
Geometry, Projective
Geometry, Analytic -- Plane

Technical Details

Link to this Item
https://name.umdl.umich.edu/aas4074.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/aas4074.0001.001/277

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:aas4074.0001.001

Cite this Item

Full citation
"An introduction to projective geometry and its applications; an analytic and synthetic treatment, by Arnold Emch ..." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/aas4074.0001.001. University of Michigan Library Digital Collections. Accessed May 19, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.