The theory of numbers, by Robert D. Carmichael ...

OTHER TOPICS 81 It is found to be possible to introduce in this way a general set of imaginaries satisfying congruences with prime moduli; and the new quantities or marks have the property of combining according to the laws of algebra. The quantities so introduced are called Galois imaginaries. We cannot go into a development of the important theory which is introduced in this way. We shall be content with indicating two directions in which it leads. In the first place there is the general Galois field theory which is of fundamental importance in the study of certain finite groups. It may be developed from the point of view indicated here. An excellent exposition, along somewhat different lines, is to be found in Dickson's Linear Groups with an Exposition of the Galois Field Theory. Again, the whole matter may be looked upon from the geometric point of view. In this way we are led to the general theory of finite geometries, that is, geometries in which there is only a finite number of points. For a development of the ideas which arise here see Veblen and Young's Projective Geometry and the memoir by Veblen and Bussey in the Transactions of the American Mathematical Society, vol. 7, pp. 241-259. ~ 43. ARITHMETIC FORMS The simplest arithmetic form is ax+b where a and b are fixed integers different from zero and x is a variable integer. By varying x in this case we have the terms of an arithmetic progression. We have already referred to Dirichlet's celebrated theorem which asserts that the form ax+b has an infinite number of prime values if only a and b are relatively prime. This is an illustration of one type of theorem connected with arithmetic forms in general, namely, those in which it is asserted that numbers of a given form have in addition a given property. Another type' of theorem is illustrated by a result stated in ~41, provided that we look at that result in the proper way. We saw that the number 2 is a quadratic residue of

/ 103
Pages

Actions

file_download Download Options Download this page PDF - Pages 74-93 Image - Page 74 Plain Text - Page 74

About this Item

Title
The theory of numbers, by Robert D. Carmichael ...
Author
Carmichael, Robert Daniel, 1879-
Canvas
Page 74 - Comprehensive Index
Publication
New York,: J. Wiley & sons, inc.; [etc., etc.]
1914.
Subject terms
Number theory.

Technical Details

Link to this Item
https://name.umdl.umich.edu/aam8546.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/aam8546.0001.001/88

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:aam8546.0001.001

Cite this Item

Full citation
"The theory of numbers, by Robert D. Carmichael ..." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/aam8546.0001.001. University of Michigan Library Digital Collections. Accessed May 18, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.