The theory of numbers, by Robert D. Carmichael ...
Annotations Tools
18 THEORY OF NUMBERS ~ 9. THE GREATEST COMMON FACTOR OF TWO OR MORE INTEGERS Let in and n be two positive integers such that in is greater than in. Then, according to the fundamental theorem of Euclid, we can form the set of equations m=qn+-ni, o <II <n, n = q21i +~112, 0 <12 <112, nl = q2n2+n3, O <n3<11n2, ilk-2=-qk-lI1IA-i +k, O<nk<n1 —l, oik- = qkn7k. If m is a multiple of n we write n no, k =o, in the above equations. DEFINITION. The process of reckoning involved in determining the above set of equations is called the Euclidian Algorithm. I. The number nH to which the Eiclidian algorithm leads is the greatest common divisor of mI and n. In order to prove this theorem we have to show two things: i) That nk is a divisor of both im and n; 2) That the greatest common divisor d of in and n is a divisor of nk. To prove the first statement we examine the above set of equations, working from the last to the first. From the last equation we see that nk is a divisor of 1k-1. Using this result we see that the second member of next to the last equation is divisible by nki Hence its first member nk-2 must be divisible by is1. Proceeding in this way step by step we show that n2 and nl, and finally that n and m, are divisible by n,. For the second part of the proof we employ the same set of equations and work from the first one to the last one. Let d be any common divisor of in and n. From the first equation we see that d is a divisor of ni. Then from the second equation it follows that d is a divisor of n2. Proceeding in this way we
-
Scan #1
Page #1
-
Scan #2
Page #2
-
Scan #3
Page #3
-
Scan #4
Page #4
-
Scan #5
Page #5
-
Scan #6
Page #6
-
Scan #7
Page #7
-
Scan #8
Page #8 - Title Page
-
Scan #9
Page #9
-
Scan #10
Page #10
-
Scan #11
Page #11
-
Scan #12
Page 5 - Table of Contents
-
Scan #13
Page 6 - Table of Contents
-
Scan #14
Page 7
-
Scan #15
Page 8
-
Scan #16
Page 9
-
Scan #17
Page 10
-
Scan #18
Page 11
-
Scan #19
Page 12
-
Scan #20
Page 13
-
Scan #21
Page 14
-
Scan #22
Page 15
-
Scan #23
Page 16
-
Scan #24
Page 17
-
Scan #25
Page 18
-
Scan #26
Page 19
-
Scan #27
Page 20
-
Scan #28
Page 21
-
Scan #29
Page 22
-
Scan #30
Page 23
-
Scan #31
Page 24
-
Scan #32
Page 25
-
Scan #33
Page 26
-
Scan #34
Page 27
-
Scan #35
Page 28
-
Scan #36
Page 29
-
Scan #37
Page 30
-
Scan #38
Page 31
-
Scan #39
Page 32
-
Scan #40
Page 33
-
Scan #41
Page 34
-
Scan #42
Page 35
-
Scan #43
Page 36
-
Scan #44
Page 37
-
Scan #45
Page 38
-
Scan #46
Page 39
-
Scan #47
Page 40
-
Scan #48
Page 41
-
Scan #49
Page 42
-
Scan #50
Page 43
-
Scan #51
Page 44
-
Scan #52
Page 45
-
Scan #53
Page 46
-
Scan #54
Page 47
-
Scan #55
Page 48
-
Scan #56
Page 49
-
Scan #57
Page 50
-
Scan #58
Page 51
-
Scan #59
Page 52
-
Scan #60
Page 53
-
Scan #61
Page 54
-
Scan #62
Page 55
-
Scan #63
Page 56
-
Scan #64
Page 57
-
Scan #65
Page 58
-
Scan #66
Page 59
-
Scan #67
Page 60
-
Scan #68
Page 61
-
Scan #69
Page 62
-
Scan #70
Page 63
-
Scan #71
Page 64
-
Scan #72
Page 65
-
Scan #73
Page 66
-
Scan #74
Page 67
-
Scan #75
Page 68
-
Scan #76
Page 69
-
Scan #77
Page 70
-
Scan #78
Page 71
-
Scan #79
Page 72
-
Scan #80
Page 73
-
Scan #81
Page 74
-
Scan #82
Page 75
-
Scan #83
Page 76
-
Scan #84
Page 77
-
Scan #85
Page 78
-
Scan #86
Page 79
-
Scan #87
Page 80
-
Scan #88
Page 81
-
Scan #89
Page 82
-
Scan #90
Page 83
-
Scan #91
Page 84
-
Scan #92
Page 85
-
Scan #93
Page 86
-
Scan #94
Page 87
-
Scan #95
Page 88
-
Scan #96
Page 89
-
Scan #97
Page 90
-
Scan #98
Page 91
-
Scan #99
Page 92
-
Scan #100
Page 93 - Comprehensive Index
-
Scan #101
Page 94 - Comprehensive Index
-
Scan #102
Page #102
-
Scan #103
Page #103
Actions
About this Item
- Title
- The theory of numbers, by Robert D. Carmichael ...
- Author
- Carmichael, Robert Daniel, 1879-
- Canvas
- Page 14
- Publication
- New York,: J. Wiley & sons, inc.; [etc., etc.]
- 1914.
- Subject terms
- Number theory.
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/aam8546.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/aam8546.0001.001/25
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:aam8546.0001.001
Cite this Item
- Full citation
-
"The theory of numbers, by Robert D. Carmichael ..." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/aam8546.0001.001. University of Michigan Library Digital Collections. Accessed May 18, 2025.