The theory of numbers, by Robert D. Carmichael ...

CONTENTS CHAPTER I. ELEMENTARY PROPERTIES OF INTEGERS PAGE ~ I. FUNDAMENTAL NOTIONS AND LAWS................................ 7 ~ 2. DEFINITION OF DIVISIBILI. THE UNIT........................... 8 ~ 3. PRIME NUMBERS. THE SIEVE OF ERATOSTHENES................... 10 ~ 4. THE NUMBER OF PRIMES IS INFINITE.............................. 12 ~ 5. THE FUNDAMENTAL THEOREM OF EUCLID........................... 13 ~ 6. DIVISIBILITY BY A PRIME NUMBER................................ 3 ~ 7. THE UNIQUE FACTORIZATION THEOREM............................ 14 ~ 8. THE DIVISORS OF AN INTEGER.................................... I6 ~ 9. THE GREATEST COMMON FACTOR OF Two OR eMORE INTEGERS....... IS ~ IO. THE LEAST COMMON MULTIPLE OF TWO OR e MORE INTEGERS........ 20 ~ II. SCALES OF NOTATION............................................ 22 ~ 12. HIGHEST POWER OF A PRIME p CONTAINED IN 1!.................. 24 ~ i3. REMARKS CONCERNING PRIME NUMBERS........................... 28 CHAPTER II. ON TEI IXNDICATOR OF AN INTEGER ~ 14. DEFINITION. INDICATOR OF A PRIME POWER....................... 30 ~ I5. THE INDICATOR OF A PRODUCT..................................... 30 ~ I6. THE INDICATOR OF ANY POSITIVE INTEGER......................... 32 ~ I7. SUM OF THE INDICATORS OF THE DIVISORS OP A NUMBER............ CHAPTER III. ELEMENTARY PROPERTIES OF CONGRUENCES ~ I8. CONGRUENCES MODULO........................................ 37 ~ 19. SOLUTIONS OF CONGRUENCES BY TRIAL...................3.......... 9 ~ 20. PROPERTIES OF CONGRUENCES RELATIVE TO DIVISION............... 40 ~ 21. CONGRUENCES WITH A PRIME MODULUS........................... 41 ~ 22. LINEAR CONGRUENCES........................................ 43 CHAPTER IV. THE THEOREMS OF FERMAT AND WILSON ~ 23. FERMAT'S GENERAL THEOREM.................................... 47 ~ 24. EULER'S PROOF OF THE SIMPLE FERMAT THEOREM................. 48 ~ 25. WILSON'S THEOREM.............................................. 49 5

/ 103
Pages

Actions

file_download Download Options Download this page PDF - Pages #1-20 Image - Page #1 Plain Text - Page #1

About this Item

Title
The theory of numbers, by Robert D. Carmichael ...
Author
Carmichael, Robert Daniel, 1879-
Canvas
Page viewer.nopagenum
Publication
New York,: J. Wiley & sons, inc.; [etc., etc.]
1914.
Subject terms
Number theory.

Technical Details

Link to this Item
https://name.umdl.umich.edu/aam8546.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/aam8546.0001.001/12

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:aam8546.0001.001

Cite this Item

Full citation
"The theory of numbers, by Robert D. Carmichael ..." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/aam8546.0001.001. University of Michigan Library Digital Collections. Accessed May 17, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.