spobooks 5597602.0001.001 in
    PROBLEMS 37 PROBLEMS 1. Convert o dgrees to adans 90, 360, -180~, 11~, (180/). 2. Covrt from radians to degres: 74, 3r4, 7, 3r, -, 1 1.7, -7.3. 3. hat is the ar a of se CIf centrl anglea (rians) in a irce of radius r? 4. A re gula polyg o of n sides i inscribed in a irce of radius r. (a) Find its ara (b) Find its perineter. 5., Ql ate (a) sin/4) (b) cos(w 3) (c) sin r (d) cos( - /r 6) (e) tun(7ni ) (f) cs(3i/2) (g) cot( -77r/4) 6. Prove the iduenties: (a) sx - ) sinx - y I) - sinx - sin2! (b) sin 30 = 3 sin 0 - 4 sin (c) cos ( )(3 +4 cos 20 1 cos 40) (d) cot 0 = csc 20 + cot 20 7. Solv for: (a) 2 sin sin - 1 = 0 (b) tan 0+ cos = 2. 8. aph the points with the iven polr coordinates a (3,0) (b) (2, ) (c) (1,57 ) d 2 e '1 22) i(f) (1,1) 9. Find a set of poar coordinates for each of the following points with given Cartesian coorinates (x, J): (a) (2,2) ) (-1, 0) (c) (0, -2) d) (3, -2) 10. Find the Cartesan cordinates of the points with given polar coordinates: (a) (1 ) (b) (3,) (c) (5,27r) (d) (2, ) 11. Evaluate: (a) (3 5i) (2 7i) (b) (1 - i) - (-3) () (1+ i)(1-i) 2 +i (2 + i) S ((3-)- i (1 + 2i) (g) cos i sin (h) cos 1 + i sin 1 12. Prove that zl - 2 equals the distance Ibtween the points l, z2: (a) From the geometri meanig of the addition of complex numbers (Figure 0-29). (b) By exprssing - 21 in terms of x, yi, 3x, y2 13. Let r(os 0 + i sin 0) 0, how that (a)1 2 (b) - =-(cos 0 - i sin 0) rz 14. Proe the rle (0-170). 15. (a) Set n 2 in (0-171) ad take real and imaginar parts on both sides to prove that cos 20 = cos20 - sin, sin 20 = 2 sin 0 cos 0 (b) Set n = 3 in (0-171) and take real and inaginary pars on both sides to prove that cos 30 = cos 0 - 3 cos 0 sin2 0 sin 30 = 3 cos2 0 sin 0 - sin3 16. (a) Prove that Zi. 2 = 0 implies zl = 0 or z2 = 0. (b) Show that, although for real numbers x2 + y2 = 0 implies x = 0 and y = 0, for complex numbers zl2 + zz22 = 0 does not imply Zi = 0 or z2 = 0.
    Top of page Top of page