The steam engine familiarly explained and illustrated; with an historical sketch of its invention and progressive improvement; its applications to navigation and railways; with plain maxims for railway speculators. By the Rev. Dionysius Lardner ... With additions and notes by James Renwick ...

EXPANSION AND -ONDENSATION. 287 third of a foot, which is equivalent to the third of a ton raised through one foot. By pursuing like reasoning, it will appear that, if the direct force of high-pressure steam be combined with the indirect force produced by its condensation, the total mechanical effect will be precisely equal to the mechanical effect by the mere condensation of atmospheric steam. (134.) In applying the principle of expansion to the direct action of high-pressure steam, advantages are gained analogous to those already explained with reference to the method of condensation. Let the piston be supposed to be loaded with three tons; the evaporation of the water beneath it will raise this weight, including the atmospheric pressure, through three perpendicular inches. Let one ton be now removed, and the remaining two tons will be raised, by the expansion of the steam, through another perpendicular inch. Let the second ton be now removed, and the piston loaded with the remaining ton will rise, by the expansion of the steam, to the height of six inches from the bottom. These consequences follow immediately from the principle that steam will expand in proportion as the pressure upon it is diminished, observing that in this case the atmospheric pressure, amounting to one ton, must always be added to the load. In this process three separate effects are produced: one ton is raised through three inches, which is equivalent to a quarter of a ton raised through one foot; another ton is raised through four inches, which is equivalent to a third of a ton through a foot, and the third ton is raised through six inches, which is equivalent to half a ton raised through a foot. The total of these effects amounts to one and one-twelfth of a ton raised through one foot, while the same load, raised by the high-pressure steam without expansion, would be equivalent to only half a ton raised through one foot. Again, let the load placed upon the piston be five tons the evaporation of the water will raise this through the sixtlh

/ 362
Pages

Actions

file_download Download Options Download this page PDF - Pages 283-287 Image - Page 287 Plain Text - Page 287

About this Item

Title
The steam engine familiarly explained and illustrated; with an historical sketch of its invention and progressive improvement; its applications to navigation and railways; with plain maxims for railway speculators. By the Rev. Dionysius Lardner ... With additions and notes by James Renwick ...
Author
Lardner, Dionysius, 1793-1859.
Canvas
Page 287
Publication
New York,: A. S. Barnes & co.;
1856.
Subject terms
Steam-engines -- Early works.

Technical Details

Link to this Item
https://name.umdl.umich.edu/ajs2642.0001.001
Link to this scan
https://quod.lib.umich.edu/m/moa/ajs2642.0001.001/315

Rights and Permissions

These pages may be freely searched and displayed. Permission must be received for subsequent distribution in print or electronically. Please go to http://www.umdl.umich.edu/ for more information.

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/moa:ajs2642.0001.001

Cite this Item

Full citation
"The steam engine familiarly explained and illustrated; with an historical sketch of its invention and progressive improvement; its applications to navigation and railways; with plain maxims for railway speculators. By the Rev. Dionysius Lardner ... With additions and notes by James Renwick ..." In the digital collection Making of America Books. https://name.umdl.umich.edu/ajs2642.0001.001. University of Michigan Library Digital Collections. Accessed May 20, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.