

Collaborative writing and publishing

John Hammersley (@DrHammersley)
Books in Browsers V - 24th October 2014

http://hdl.loc.gov/loc.pnp/cph.3a50642

http://hdl.loc.gov/loc.pnp/cph.3a50642

http://hdl.loc.gov/loc.pnp/cph.3a50642

AUTHORS REVIEWERS PUBLISHERS READERS

Problems...

Dealing with multiple versions of the same document;
Long email chains passing files around;
Hours spent formatting \& typesetting;
Maintaining and formatting references \& citations;
Long revision cycles to incorporate comments, leading to more of the above.

It doesn't have to be like this!

Online collaborative editing tools provide...

One version of the document, accessible by all;
No need to email files - simply send the link;
Typesetting done automatically in the background whilst you type (thanks LaTeX!);

Automatic reference styles and citation links;
Review tools to allow colleagues and supervisors to comment directly on the document.

writeEATEX

Online
 Collaborative LaTeX Editor

The easiest way to create, edit and publish your research.

Why LaTeX?

It makes beautiful documents

- It's easy to spot a LaTeX document in a pile of Word docs

It was created by scientists, for scientists

- A large and active community

It is powerful | you can extend it

- Packages for papers, presentations, spreadsheets, ...

WriteLaTeX in 2013

50,000 authors in170 countries

Over 500,000 documents created

In use at over 1,000 universities andinstitutionsworldwide.

writeIATEX

"I'm so proud of my project report... science I love you."

Hannah \& Cat Manchester College Students
"It really streamlined the process of writing the paper... I was happy to find a 21st century solution."

Artem Kaznatcheev Researcher at McGill University

Gverleaf

Overleaf provides a rich text editor for non-LaTeX users

O. Jardel1, S. Laurent2, T. Reveyrand2, R. Quere2, P. Nakkala2, A. Martin2
S. Piotrowicz1, M. Campovecchio2, S.L. Delage1 1III-V Lab, route de Nozay, 91461 Marcoussis Cedex, France

Modeling of Trap Induced Dispersion of Large Signal Dynamic Characteristics of GaN HEMTs

2XLIM, 7 rue Jules Valles, 19100 Brive-la-gaillarde, France olivier.jardel@3-5lab.fr

Abstract

48 We propose here a non-linear GaN HEMT model for CAD including a trapping effects description consistent with both small-signal and large-signal operating modes. It takes into account the dynamics of the traps and then allows to accurately model the modulated large signal characteristics that are encountered in telecommunication and radar signals. This model is elaborated through low-frequency S-parameter measurements complementary to more classical pulsed-IV characterizations. A $8 \times 75 \mu \mathrm{~m}$ AllnN/GaN HEMT model was designed and particularly validated in large-signal pulsed RF operation. It is also shown that thermal and trapping effects have opposite effects on the output conductance, thus opening the way for separate characterizations of the two effects.

Abstract-We propose here a non-linear GaN HEMT model for CAD including a trapping effects description consisten with both small-signal and large-signal operating modes. It
takes into account the dynamics of the traps and then allows to accurately model the modulated large signal characteristios that are encountered in telecommunication and radar signals. This model is elaborated through low-frequency S.parameter measurements complementary to more classical pulsed-IV char-
acterizations A $8 \times 75 \mathrm{~m}$ AIInN/GaN HEMT moded was designed and particularly validated in largesignal puked RF operation. It is also shown that thermal and trapping effects have opposit effects on the output conductance, thus opening the way for separate characterizations of the two effects. S-parameters, CAD non-linear model, RF pulsed operation

Modeling of Trap Induced Dispersion of Large Signal Dynamic Characteristics of GaN HEMTs
O. Jardel ${ }^{*}$, S. Laurent ${ }^{\dagger}$, T. Reveyrand ${ }^{\dagger}$, R. Quérét, P. Nakkala ${ }^{\dagger}$, A. Martin ${ }^{\dagger}$ S. Piotrowicz* ${ }^{*}$ M. Campovecchio ${ }^{\dagger}$, S.L. Delage ${ }^{*}$ III-V Lab, route de Nozay, 91461 Marcoussis Cedex, France ${ }^{1}$ XLIM, 7 rue Jules Valles, 19100 Brive-la-gaillarde. France
olivier.jardel@3-5lab.fr
account the dynamics of the traps. Finally we conclude and draw some perspectives.
iI. Impact of traps on large signal Characteristics
One convenient way to identify the impact of trapping effects is to monitor the average drain current of the transistor nesus an increasing RF input power. It has already bee reported in [1] and [3] that this drain current under class conditions decreases as the input power increases, contradicting the expected characteristics. Clearly this behavio cannot be explained by thermal behavior as far as the channe temperature sinks when the power increases and would lead at least for enlargement.

Overleaf includes rich commenting and track changes for review

"FINAL."doc

FINAL_rev.6.COMMENTS.doc
FINAL_rev.8.comments5. CORRECTIONS.doC

FINAL_rev.18.comments7.
FINAL_rev. 22.comments49. corrections9.MORE.30.doc corrections.10.\#@\#\%WHYDD ICOMETOGRADSCHOOL????.doC

The full structured source and project files are always available

Authors submit their paper \& data files directly to journals

White label version of the editor allows for journal-specific customizations

"The integration of Overleaf into our editorial workflow enabled the swift processing of the authors' manuscripts and simplified the procedure for our pre-publication checks."

Karen Rowlett, Managing Editor at F1000Research

Thanks!

Find out more at: www.overleaf.com

write ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$

