Collaborative writing and publishing

John Hammersley (@DrHammersley)
Books in Browsers V – 24th October 2014
Problems...

Dealing with multiple versions of the same document;
Long email chains passing files around;
Hours spent formatting & typesetting;
Maintaining and formatting references & citations;
Long revision cycles to incorporate comments, leading to more of the above.
It doesn’t have to be like this!
Online collaborative editing tools provide...

One version of the document, accessible by all;
No need to email files – simply send the link;
Typesetting done automatically in the background whilst you type (thanks LaTeX!);
Automatic reference styles and citation links;
Review tools to allow colleagues and supervisors to comment directly on the document.
Online Collaborative LaTeX Editor

The easiest way to create, edit and publish your research.

Start writing now! CREATE A NEW PAPER
Why LaTeX?

It makes beautiful documents
 – It’s easy to spot a LaTeX document in a pile of Word docs

It was created by scientists, for scientists
 – A large and active community

It is powerful | you can extend it
 – Packages for papers, presentations, spreadsheets, . . .
WriteLaTeX in 2013

50,000 authors in 170 countries

Over 500,000 documents created

In use at over 1,000 universities and institutions worldwide.
“I'm so proud of my project report... science I love you.”

Hannah & Cat
Manchester College Students

“It really streamlined the process of writing the paper... I was happy to find a 21st century solution.”

Artem Kaznatcheev
Researcher at McGill University
Modeling of Trap Induced Dispersion of Large Signal Dynamic Characteristics of GaN HEMTs

O. Jardel1, S. Laurent2, T. Reveyrand2, R. Quere2, P. Nakka1, A. Martin2, S. Piotrowicz1, M. Campovecchio1, S.L. Delage1

1III-V Lab, route de Nozay, 91461 Marcoussis Cedex, France
2XLIM, 7 rue Jules Valles, 19100 Brive-la-gaillarde, France
olivier.jardel@3-5lab.fr

Abstract—We propose here a non-linear GaN HEMT model for CAD including a trapping effects description consistent with both small-signal and large-signal operating modes. It takes into account the dynamics of the traps and then allows to accurately model the modulated large signal characteristics that are encountered in telecommunication and radar signals. This model is elaborated through low-frequency S-parameter measurements complementary to more classical pulsed-IV characteristics. A 8x75μm AlGaN/GaN HEMT model was designed and particularly validated in large-signal pulsed RF operation. It is also shown that thermal and trapping effects have opposite effects on the output conductance, thus opening the way for separate characterizations of the two effects.

Index Terms—Trapping effects, thermal effects, low frequency S-parameters, CAD non-linear model, RF pulsed operation.

I. INTRODUCTION

Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) on SiC are now recognized as good candidates for the development of a number of RF applications and notably Power Amplifiers (PA) for telecommunication and radars, due to their high breakdown voltage, their high cut-off frequency as well as their high temperature capabilities. However they are still subject to parasitics effects such as thermal effects and especially trapping effects. Those trapping effects have been extensively studied using a number of techniques such as pulsed measurements, load-pull measurements as well as frequency dispersion measurements. At the same time, modeling trapping effects using a double charge trap model. This model is elaborated through low-frequency S-parameter measurements complementary to more classical pulsed-IV characteristics. A 8x75μm AlGaN/GaN HEMT model was designed and particularly validated in large-signal pulsed RF operation. It is also shown that thermal and trapping effects have opposite effects on the output conductance, thus opening the way for separate characterizations of the two effects.

II. IMPACT OF TRAPS ON LARGE SIGNAL CHARACTERISTICS

One convenient way to identify the impact of trapping effects is to monitor the average drain current of the transistor versus an increasing RF input power. It has already been reported in [1] and [3] that this drain current under class-AB conditions decreases as the input power increases, contradicting the expected characteristics. Clearly this behavior cannot be explained by thermal behavior as far as the channel temperature sinks when the power increases and would lead, at least for moderate powers, to an average drain current enhancement.
Overleaf includes rich commenting and track changes for review

{Introduction}

Your introduction goes here! Some examples of commonly used commands and features are listed below, to help you get started. If you have a question, please use the help menu (``?``) on the top bar to search for help or ask us a question.

John Lees-Miller about 2 hours ago:

Seems punchier. OK?

John Hammersley replied about an hour ago:

Yep.

John Lees-Miller closed this about an hour ago.

{Abstract}

Your abstract.

{Introduction}

This is where you write your introduction. Some examples of commonly used commands and features are listed below, to help you get started. If you have a question, please use the help menu (``?``) on the top bar to search for help or ask us a question.

{Some LaTeX Examples}

{How to Include Figures}

First you have to upload the image file (JPEG, PNG or PDF) from your computer to writeLaTeX using the upload link the project menu. Then use the includegraphics command to include it in your document. Use the figure environment and the caption command to add a number and a caption to your figure. See
"FINAL".doc

FINAL.doc!

FINAL_rev.2.doc

FINAL_rev.6.COMMENTS.doc

FINAL_rev.8.comments5.CORRECTIONS.doc

Track changes

FINAL_rev.18.comments7.corrections9.MORE.30.doc

FINAL_rev.22.comments49.corrections.10.#@$%WHYDIDICOMETOGRADUATESCHOOL????.doc

www.phdcomics.com
Modeling of Trap Induced Dispersion of Large Signal Dynamic Characteristics of GaN HEMTs

O. Jardel*1, S. Laurent1, T. Revyrand1, R. Quere1, P. Nikolaou1, A. Marini1, S. Potemski1, M. Campovecchio1, N. Delage1

1Cpl. Enlam, 7 rue des Jules Valles, 91800 Brive-la-gaillarde, France

Abstract. We propose here a fast variational GaN HEMT model for a GaN including a trapping effects in a consistent with both multivalley and multiquantum well structures. It takes into account the dynamics of the traps and then allows to accurately model the measured signal characteristics that are encountered in intermittent and carrier sweeps. This model is extended through a frequency-dependent parameter measurements corresponding to the first classical pulsed-V characterizations. A GaN HEMT-S100 was designed and specifically fabricated to probe pulse pulsed R measurement. It also shows that thermal and trapping effects have opposite effect on dynamic characteristics and that the measured signals are highly sensitive to the trapping levels. Contrary to some previous works, the model we use for separating the characteristics of the two effects:

1. Introduction

Gallium Nitride GaN High Electron Mobility Transistors (HEMT) are now recognized as good candidates for the development of a number of RF applications and notably Power Amplifier (PA) for telecommunication and radars, due to their high breakdown voltage, their high cut-off frequency as well as their high temperature capabilities. Moreover they are not subject to parasitic effects such as thermal affects and especially trapping effects. Those trapping effects have been extensively studied using a number of techniques such as pulsed measurements, load pull measurements as well as frequency dispersion measurements. At the same time, models have been proposed to take these effects into account [1,2,3,4], and while the effects of traps are well taken into account in CW conditions, their impact on dynamic large signal characteristics remains difficult to understand. They manifest themselves under restricted signals such as RF pulses or telecommunication signals. Memory effects are the main consequence of these trapping effects. In this paper we propose to investigate the dynamics of these trapping effects using large signal load pull measurements as well as frequency dispersion measurements. It shall be shown that a constant nonlinear model can be accurately used to reproduce the large dynamic behavior of GaN transistors. The model is organized as follows: Section II describes the theoretical impact of traps on the average current obtained under pulsed load conditions. Section III presents the measurements performed in an ALPHACOM S100 and the results obtained. Section IV presents the model parameters determination and the results obtained. Section V presents the discussion of the model parameters determination and the results obtained. Section VI presents the discussion of the model parameters determination and the results obtained. Section VII presents the discussion of the model parameters determination and the results obtained.
Authors submit their paper & data files directly to journals.
F1000Research Article Template

Please list all authors that played a significant role in the research involved in the article. Please provide full affiliation information (including full institutional address, ZIP code and e-mail address) for all authors, and identify who is/are the corresponding author(s).

Abstract

Abstracts should be up to 300 words and provide a succinct summary of the article. Although the abstract should explain why the article might be interesting, care should be taken not to inappropriately over-emphasise the importance of the work described in the article. Citations should not be used in the abstract, and the use of abbreviations should be minimized.

Introduction

The format of the main body of the article is flexible; it should be concise and in the format most appropriate to displaying the content of the article. Some examples of commonly used commands and features are listed below, to...
“The integration of Overleaf into our editorial workflow enabled the swift processing of the authors' manuscripts and simplified the procedure for our pre-publication checks.”

Karen Rowlett, Managing Editor at F1000Research
Thanks!

Find out more at:
www.overleaf.com