Astronomia Britannica exhibiting the doctrine of the sphere, and theory of the planets decimally by trigonometry, and by tables : fitted for the meridian of London ... / by John Newton ...

About this Item

Title
Astronomia Britannica exhibiting the doctrine of the sphere, and theory of the planets decimally by trigonometry, and by tables : fitted for the meridian of London ... / by John Newton ...
Author
Newton, John, 1622-1678.
Publication
London :: Printed for the author by R. and W. Leybourn, and are to be sold by Thomas Piercepoint ...,
1657.
Rights/Permissions

To the extent possible under law, the Text Creation Partnership has waived all copyright and related or neighboring rights to this keyboarded and encoded edition of the work described above, according to the terms of the CC0 1.0 Public Domain Dedication (http://creativecommons.org/publicdomain/zero/1.0/). This waiver does not extend to any page images or other supplementary files associated with this work, which may be protected by copyright or other license restrictions. Please go to http://www.textcreationpartnership.org/ for more information.

Subject terms
Astronomy -- Early works to 1800.
Planetary theory -- Early works to 1800.
Astronomy -- Mathematics -- Early works to 1800.
Link to this Item
http://name.umdl.umich.edu/A52255.0001.001
Cite this Item
"Astronomia Britannica exhibiting the doctrine of the sphere, and theory of the planets decimally by trigonometry, and by tables : fitted for the meridian of London ... / by John Newton ..." In the digital collection Early English Books Online. https://name.umdl.umich.edu/A52255.0001.001. University of Michigan Library Digital Collections. Accessed June 4, 2024.

Pages

Example.
The Horizontall parallax of the Sun is
. 03912
The Horizontall parallax of the Moon
. 99396
Horizontall parallax of the Moon from the Sun
. 95484

6 Adde the Logarithme of the Horizontall parallax of the Moon from the Sun, the sine of the Altitude of the Moones orbe, and the sine of the distance of the Sun from the Nonagesime, their summe subtracting twice Radius, is the Logarithme of the parallax of longitude.

Do you have questions about this content? Need to report a problem? Please contact us.