Philosophiæ naturalis principia mathematica autore Js. Newton ...
About this Item
Title
Philosophiæ naturalis principia mathematica autore Js. Newton ...
Author
Newton, Isaac, Sir, 1642-1727.
Publication
Londini :: Jussu Societatis Regiae ac Typis Josephi Streater ...,
1687.
Rights/Permissions
To the extent possible under law, the Text Creation Partnership has waived all copyright and related or neighboring rights to this keyboarded and encoded edition of the work described above, according to the terms of the CC0 1.0 Public Domain Dedication (http://creativecommons.org/publicdomain/zero/1.0/). This waiver does not extend to any page images or other supplementary files associated with this work, which may be protected by copyright or other license restrictions. Please go to http://www.textcreationpartnership.org/ for more information.
Subject terms
Mechanics -- Early works to 1800.
Celestial mechanics -- Early works to 1800.
Link to this Item
http://name.umdl.umich.edu/A52251.0001.001
Cite this Item
"Philosophiæ naturalis principia mathematica autore Js. Newton ..." In the digital collection Early English Books Online. https://name.umdl.umich.edu/A52251.0001.001. University of Michigan Library Digital Collections. Accessed May 30, 2025.
Pages
Lemma VIII.
Sit ABC Parabola umbilicum habens S. Chordâ AC bisectâ in I abscindatur segmentum ABCI, cujus diameter sit I μ & vertex μ. In I μ productâ capiatur μ O aequalis dimidio ipsius I μ. Iungatur OS, &
[illustration]
producatur ea ad ξ, ut sit S ξ aequalis 2 SO. Et si Cometa B moveatur in arcu CBA, & agatur ξ B secans AC in E: dico quod punctum E ab∣scindet
descriptionPage 485
de chorda AC segmentum AE tempori proportionale quam∣proxime.
Jungatur enim EO secans arcum Parabolicum ABC in Y, & erit area curvilinea AEY ad aream curvilineam ACY ut AE ad AC quamproximè. Ideoque cum triangulum ASE sie ad triangulum ASC in eadem ratione, erit area tota ASEY ad aream totam ASCY ut AE ad AC quamproximè. Cum autem ξ O sit ad SO ut 3 ad 1 & EO ad YO prope in eadem ratione, erit SY ipsi EB parallela quamproximè, & propterea triangulum SEB, triangulo YEB quamproximè aequale. Unde si ad aream ASEY addatur triangulum EYB, & de summa auferatur triangulum SEB, ma∣nebit area ASBY areae ASEY aequalis quamproximè, atque adeo ad aream ASCY ut AE ad AC. Sed area ASBY est ad aream ASCY ut tempus descripti arcus AB ad tempus descripti arcus to∣tius. Ideoque AE est ad AC in ratione temporum quamproximè. Q.E.D.
email
Do you have questions about this content? Need to report a problem?
Please contact us.