Philosophiæ naturalis principia mathematica autore Js. Newton ...

About this Item

Title
Philosophiæ naturalis principia mathematica autore Js. Newton ...
Author
Newton, Isaac, Sir, 1642-1727.
Publication
Londini :: Jussu Societatis Regiae ac Typis Josephi Streater ...,
1687.
Rights/Permissions

To the extent possible under law, the Text Creation Partnership has waived all copyright and related or neighboring rights to this keyboarded and encoded edition of the work described above, according to the terms of the CC0 1.0 Public Domain Dedication (http://creativecommons.org/publicdomain/zero/1.0/). This waiver does not extend to any page images or other supplementary files associated with this work, which may be protected by copyright or other license restrictions. Please go to http://www.textcreationpartnership.org/ for more information.

Subject terms
Mechanics -- Early works to 1800.
Celestial mechanics -- Early works to 1800.
Link to this Item
http://name.umdl.umich.edu/A52251.0001.001
Cite this Item
"Philosophiæ naturalis principia mathematica autore Js. Newton ..." In the digital collection Early English Books Online. https://name.umdl.umich.edu/A52251.0001.001. University of Michigan Library Digital Collections. Accessed May 7, 2025.

Pages

Prop. XXII. Theor. XVI.
Sit Fluidi cujusdam densitas compressioni proportionalis, & partes ejus a gravitate quadratis distantiarum suarum a centro reciproce proportionali deorsum trahantur: dico quod si distantiae sumantur in progressione Musica, densitates Fluidi in his distantiis erunt in pro∣gressione Geometrica.

Designet S centrum, & SA, SB, SC, SD, SE distantias in Progressione Geometrica. Erigantur perpendicula AH, BI, CK, &c. quae sint ut

[illustration]
Fluidi den∣sitates in lo∣cis A, B, C, D, E, &c. & ipsius gravi∣tates speci∣cae in iisdem locis erunt AH / SAq., BI / SBq., CK / SCq., &c. Fin∣ge has gravitates uniformiter continuari, primam ab A ad B, se∣cundam a B ad C, tertiam a C ad D, &c. Et hae ductae in altitu∣dines AB, BC, CD, DE, &c. vel, quod perinde est, in distantias SA, SB, SC, &c. altitudinibus illis proportionales, conficient ex∣ponentes

Page 299

pressionum AH / SA, BI / SB, CK / SC, &c. Quare cum densitates sint ut harum pressionum summae, differentiae densitatum AH−BI, BI−CK, &c. erunt ut summarum differentiae AH / SA, BI / SB, CK / SC, &c. Centro S Asymptotis SA, SX describatur Hyperbo∣la quaevis, quae secet perpendicula AH, BI, CK, &c. in a, b, c; ut & perpendicula ad Asymptoton SX demissa H, ••••, Kw in h, i, k; & densitatum differentiae tu, uw, &c. erunt ut AH / SA, BI / SB, &c. Et rectangula tu×th, uw×ui, &c. seu tp, uq. &c. ut AH×th/SA, BI×ui/SB, &c. id est ut Aa, Bb &c. Est enim ex natura Hyperbolae SA ad AH vel St, ut th ad Aa, adeoque AH×th/SA aequale Aa. Et simili argumento est BI×ui/SB aequalis Bb, &c. Sunt autem Aa Bb, Cc, &c. continue proportionales, & propterea differentiis su∣is Aa−Bb, Bc, &c. proportionales; ideoque differentiis hisce proportional•••• sunt rectangula tp, uq, &c. ut & summis diffe∣rentiarum Aa−Cc vel Aa−Dd summae rectangulorum tp+uq, vel tp+uq+wr▪ Sunto ejusmodi termini quam plurimi, & sum∣ma omnium differentiarum, puta Aa−Ff, erit summae omnium rectangulorum, puta zthn, proportionalis. Augeatur numerus terminorum & minuantur distantiae punctorum A, B, C, &c. in in∣finitum, & rectangula illa evadent aequalia areae Hyperbolicae zthn, adeoque huic areae proportionalis est differentia Aa−Ff. Su∣mantur jam distantiae quaelibet, puta SA, SD, SF in Progressio∣ne Musica, & differentiae Aa−Dd, Dd−Ff erunt aequales; & propterea differentiis hisce proportionales areae thlx, xlnz aequa∣les erunt inter se, & densitates St, Sx, Sz, id est AH, DL, FN, continue proportionales. Q.E.D.

Page 300

Corol. Hinc si dentur Fluidi densitates duae quaevis, puta AH & CK, dabitur area thkw harum differentiae tw respondens; & inde invenietur densitas FN in al••••••udine quacunque SF, sumen∣do aream thnz ad aream illam datam thkw ut est differentia Aa−Ff ad differentiam Aa−Cc.

Scholium

Simili argumentatione probari potest, quod si gravitas particu∣larum Fluidi diminuatur in triplicata ratione distantiarum a centro; & quadratorum distantiarum SA, SB, SC, &c. reciproca (nem∣pe SA cub./SAq., SA cub./SBq., SA cub./SCq.) sumantur in progressione Arithme∣ca; densitates AH, BI, CK, &c. erunt in progressione Geome∣trica. Et si gravitas diminuatur in quadruplicata ratione distan∣tiarum, & cuborum distantiarum reciproca (puta SAqq./SA cub., SAqq./SB cub., SAqq./SC cub., &c.) sumantur in progressione Arithmetica; densitates AH, BI, CK, &c. erunt in progressione Geometrica. Et sic in infinitum. Rursus si gravitas particularum Fluidi in omnibus di∣stantiis eadem sit, & distantiae sint in progressione Arithmetica, densitates erunt in progressione Geometrica, uti Vir Cl. Edmundus Halleius invenit. Si gravitas sit ut distantia, & quadrata distan∣tiarum sint in progressione Arithmetica, densitates erunt in pro∣gressione Geometrica. Et sic in infinitum. Haec ita se habent ubi Fluidi compressione condensati densitas est ut vis compressio∣nis, vel, quod perinde est, spatium a Fluido occupatum reciproce ut haec vis. Fingi possunt aliae condensationis leges, ut quod cu∣bus vis comprimentis sit ut quadrato-quadratum densitatis, seu triplicata ratio Vis aequalis quadruplicatae rationi densitatis. Quo in casu, si gravitas est reciproce ut quadratum distantiae a centro, densitas erit reciproce ut cubus distantiae. Fingatur quod cubus vis comprimentis sit ut quadrato-cubus densitatis, & si gravitas est reciproce ut quadratum distantiae, densitas erit reciproce in

Page 301

sesquiplicata ratione distantiae. Fingatur quod vis comprimens sit in duplicata ratione densitatis, & gravitas reciproce in ratione duplicata distantiae, & densitas erit reciproce ut distantia. Ca∣sus omnes percurrere longum esset.

Do you have questions about this content? Need to report a problem? Please contact us.