Philosophiæ naturalis principia mathematica autore Js. Newton ...

About this Item

Title
Philosophiæ naturalis principia mathematica autore Js. Newton ...
Author
Newton, Isaac, Sir, 1642-1727.
Publication
Londini :: Jussu Societatis Regiae ac Typis Josephi Streater ...,
1687.
Rights/Permissions

To the extent possible under law, the Text Creation Partnership has waived all copyright and related or neighboring rights to this keyboarded and encoded edition of the work described above, according to the terms of the CC0 1.0 Public Domain Dedication (http://creativecommons.org/publicdomain/zero/1.0/). This waiver does not extend to any page images or other supplementary files associated with this work, which may be protected by copyright or other license restrictions. Please go to http://www.textcreationpartnership.org/ for more information.

Subject terms
Mechanics -- Early works to 1800.
Celestial mechanics -- Early works to 1800.
Link to this Item
http://name.umdl.umich.edu/A52251.0001.001
Cite this Item
"Philosophiæ naturalis principia mathematica autore Js. Newton ..." In the digital collection Early English Books Online. https://name.umdl.umich.edu/A52251.0001.001. University of Michigan Library Digital Collections. Accessed May 6, 2025.

Pages

Prop. XII. Theor. IX.
Iisdem positis, dico quod si spatia descripta sumantur in progressio∣ne Arithmetica, velocitates data quadam quantitate auctae erunt in progressione Geometrica.

In Asymptoto CD detur punctum R, & erecto perpendiculo RS, quod occurrat Hyperbolae in S, exponatur descriptum spa∣tium per aream Hyperbolicam RSED; & velocitas erit ut lon∣gitudo GD, quae cum data CG componit longitudinem CD, in Progressione Geometrica decrescentem, interea dum spatium RS∣ED augetur in Arithmetica.

Etenim ob datum spatii incrementum EDde, lineola Dd, quae decrementum est ipsius GD, erit reciproce ut ED, adeo{que} directe ut CD, hoc est ut summa ejusdem GD & longitudinis datae CG. Sed velocitatis decrementum, tempore sibi reciproce proportionali, quo data spatii particula DdeE describitur, est ut resistentia & tempus conjunctim, id est directe ut summa dua∣rum quantitatum, quarum una est velocitas, altera ut velocitatis quadratum, & inverse ut velocitas; adeoque directe ut summa de∣arum quantitatum, quarum una datur, altera est ut velocitas. Igitur decrementum tam velocitatis quam lineae GD, est ut quan∣titas data & quantitas decrescens conjunctim, & propter analoga decrementa, analogae semper erunt quantitates decrescentes: ni∣mirum velocitas & linea GD. Q.E.D.

Corol. 1. Igitur si velocitas exponatur per longitudinem GD, spatium descriptum erit ut area Hyperbolica DESR.

Corol. 2. Et si utcunque assumatur punctum R, invenietur punctum G, capiendo GD ad GR ut est velocitas sub initio ad velocitatem post spatium quodvis ABED descriptum. Inven∣to autem puncto G, datur spatium ex data velocitate, & contra.

Page 277

Corol. 3. Unde cum, per Prop. XI. detur velocitas ex da∣to tempore, & per hanc Propositionem detur spatium ex data velocitate; dabitur spatium ex dato tempore: & contra.

Do you have questions about this content? Need to report a problem? Please contact us.