Philosophiæ naturalis principia mathematica autore Js. Newton ...

About this Item

Title
Philosophiæ naturalis principia mathematica autore Js. Newton ...
Author
Newton, Isaac, Sir, 1642-1727.
Publication
Londini :: Jussu Societatis Regiae ac Typis Josephi Streater ...,
1687.
Rights/Permissions

To the extent possible under law, the Text Creation Partnership has waived all copyright and related or neighboring rights to this keyboarded and encoded edition of the work described above, according to the terms of the CC0 1.0 Public Domain Dedication (http://creativecommons.org/publicdomain/zero/1.0/). This waiver does not extend to any page images or other supplementary files associated with this work, which may be protected by copyright or other license restrictions. Please go to http://www.textcreationpartnership.org/ for more information.

Subject terms
Mechanics -- Early works to 1800.
Celestial mechanics -- Early works to 1800.
Link to this Item
http://name.umdl.umich.edu/A52251.0001.001
Cite this Item
"Philosophiæ naturalis principia mathematica autore Js. Newton ..." In the digital collection Early English Books Online. https://name.umdl.umich.edu/A52251.0001.001. University of Michigan Library Digital Collections. Accessed May 11, 2025.

Pages

Prop. XLII. Prob. XXIX.
Data lege vis centripetae, requiritur motus corporis de loco dato data cum velocitate secundum datam rectam egressi.

Stantibus quae in tribus Propositionibus praecedentibus: exeat corpus de loco I secundum lineolam IT, ea cum velocitate quam corpus aliud, vi aliqua uniformi centripeta, de loco P cadendo ac∣quirere posset in D: sit{que} haec vis uniformis ad vim qua corpus primum urgetur in I, ut DR ad DF. Pergat autem corpus ver∣sus k; centro{que} C & intervallo Ck describatur circulus ke occur∣rens rectae PD in e, & erigantur curvarum ALMm, BFGg, abzvdcxw ordinatim applicatae em, eg, ev, ew. Ex dato rectan∣gulo PDRQ, data{que} lege vis centripetae qua corpus primum agi∣tatur, dantur curvae lineae BFGg, ALMm, per constructio∣nem Problematis XXVII. & ejus Corol. 1. Deinde ex dato an∣gulo CIT datur proportio nascentium IK, KN, & inde, per con∣structionem Prob. XXVIII, datur quantitas Q, una cum curvis lineis abzv, dcxw: adeo{que} completo tempore quovis Dbve, datur tum corporis altitudo Ce vel Ck, tum area Dcwe, ei{que} aequalis Sector XCy, angulus{que} XCy & locus k in quo corpus tunc versabitur. Q.E.I.

Supponimus autem in his Propositionibus vim centripetam in recessu quidem a centro variari secundum legem quamcun{que} quam quis imaginari potest, in aequalibus autem a centro distantiis esse undi{que} eandem. At{que} hactenus corporum in Orbibus immobili∣bus consideravimus. Superest ut de motu eorum in Orbibus qui circa centrum virium revolvuntur adjiciamus pauca.

Do you have questions about this content? Need to report a problem? Please contact us.