Philosophiæ naturalis principia mathematica autore Js. Newton ...

About this Item

Title
Philosophiæ naturalis principia mathematica autore Js. Newton ...
Author
Newton, Isaac, Sir, 1642-1727.
Publication
Londini :: Jussu Societatis Regiae ac Typis Josephi Streater ...,
1687.
Rights/Permissions

To the extent possible under law, the Text Creation Partnership has waived all copyright and related or neighboring rights to this keyboarded and encoded edition of the work described above, according to the terms of the CC0 1.0 Public Domain Dedication (http://creativecommons.org/publicdomain/zero/1.0/). This waiver does not extend to any page images or other supplementary files associated with this work, which may be protected by copyright or other license restrictions. Please go to http://www.textcreationpartnership.org/ for more information.

Subject terms
Mechanics -- Early works to 1800.
Celestial mechanics -- Early works to 1800.
Link to this Item
http://name.umdl.umich.edu/A52251.0001.001
Cite this Item
"Philosophiæ naturalis principia mathematica autore Js. Newton ..." In the digital collection Early English Books Online. https://name.umdl.umich.edu/A52251.0001.001. University of Michigan Library Digital Collections. Accessed April 28, 2025.

Pages

Prop. XXXIII. Theor. IX.
Positis jam inventis, dico quod corporis cadentis velocitas in loco quo∣vis C est ad velocitatem corporis centro B intervallo BC circulum describentis, in dimidiata ratione quam CA, distantia corporis a Circuli vel Hyperbolae vertice ulteriore A, habet ad figurae semidi∣ametrum principalem ½ AB.

Page 117

Nam{que} ob proportionales CD, CP, linea AB communis est utrius{que} figurae RPB, DEB diameter. Bisecetur eadem in O, & agatur recta PT quae tangat figuram RPB in P, at{que} etiam se∣cet communem illam diametrum AB (si opus est productam) in T; sit{que} SY ad hanc rectam & BQ ad

[illustration]
hanc diametrum perpendicularis, at{que} figu∣rae RPB latus rectum ponatur L. Constat per Cor. 9. Theor. VIII. quod corporis in linea RPB circa centrum S moventis velo∣citas in loco quovis P sit ad velocitatem cor∣poris intervallo SP circa idem centrum cir∣culum describentis in dimidiata ratione rec∣tanguli ½ L×SP ad SY quadratum. Est autem ex Conicis ACB ad CPq. ut 2 AO ad L, adeo{que} 2 CPq.×AO / ACB aequale L. Ergo ve∣locitates illae sunt ad invicem in dimidiata ratione CPq.×AO×SP/ACB ad SY quad. Porro ex Conicis est CO ad BO ut BO ad TO, & composite vel divisim ut CB ad BT. Un∣de dividendo vel componendo fit BO−uel+CO ad BO ut CT ad BT, id est AC ad AO ut CP ad BQ; inde{que} CPq.×AO×SP / ACB aequale est BQq.×AC×SP / AO×BC. Minuatur jam in infinitum figurae RPB latitudo CP, sic ut punctum P coeat cum puncto, C, punctum{que} S cum puncto B, & linea SP cum linea BC, linea{que} SY cum linea BQ; & corporis jam recta descenden∣tis in linea CB velocitas fiet ad velocitatem corporis centro B in∣teruallo BC circulum describentis, in dimidiata ratione ipsius BQq.×AC×SP / AO×BC ad SYq. hoc est (neglectis aequalitatis rationibus SP ad BC & BQq. ad SYq.) in dimidiata ratione AC ad AO.Q.E.D.

Page 118

Corol. Punctis B & S coeuntibus, fit TC and ST ut AC ad AO.

Do you have questions about this content? Need to report a problem? Please contact us.