Philosophiæ naturalis principia mathematica autore Js. Newton ...

About this Item

Title
Philosophiæ naturalis principia mathematica autore Js. Newton ...
Author
Newton, Isaac, Sir, 1642-1727.
Publication
Londini :: Jussu Societatis Regiae ac Typis Josephi Streater ...,
1687.
Rights/Permissions

To the extent possible under law, the Text Creation Partnership has waived all copyright and related or neighboring rights to this keyboarded and encoded edition of the work described above, according to the terms of the CC0 1.0 Public Domain Dedication (http://creativecommons.org/publicdomain/zero/1.0/). This waiver does not extend to any page images or other supplementary files associated with this work, which may be protected by copyright or other license restrictions. Please go to http://www.textcreationpartnership.org/ for more information.

Subject terms
Mechanics -- Early works to 1800.
Celestial mechanics -- Early works to 1800.
Link to this Item
http://name.umdl.umich.edu/A52251.0001.001
Cite this Item
"Philosophiæ naturalis principia mathematica autore Js. Newton ..." In the digital collection Early English Books Online. https://name.umdl.umich.edu/A52251.0001.001. University of Michigan Library Digital Collections. Accessed May 4, 2025.

Pages

Prop. XVII. Prob. IX.
Posito quod vis centripeta sit reciproce proportionalis quadrato distan∣tiae a centro, & quod vis illius quantitas absoluta sit cognita; re∣quiritur linea quam corpus describit, de loco dato cum data velo∣citate secundum datam rectam egrediens.

Vis centripeta tendens ad punctum Sea sit quae corpus p in orbita quavis data pq gyrare faciat, & cognoscatur hujus veloci∣tas in loco p. De loco P secundum lineam PR exeat corpus P cum data velocitate, & mox inde, cogente vi centripeta, deflect∣at illud in Conisectionem PQ. Hanc igitur recta PR tanget in P. Tangat itidem recta aliqua pr orbitam pq in p, & si ab S ad eas tangentes demitti intelligantur perpendicula, erit (per Corol. 1. Theor. VIII.) latus rectum Conisectionis ad latus rect∣um

Page 59

orbitae datae, in ratione composita ex duplicata ratione per∣pendiculorum & duplicata ratione velocitatum, at{que} adeo datur. Sit istud L. Datur

[illustration]
praeterea Conisecti∣onis umbilicus S. Anguli RPS com∣plementum ad du∣os rectos fiat angu∣lus RPH, & dabi∣tur positione linea PH, in qua umbilicus alter H locatur. Demisso ad PH perpen∣diculo SK, & erecto semiaxe conjugato BC, est SPq.−2 KPH+PHq. (per Prop. 13. Lib. II. Elem.)=SHq.=4 CHq.=4 BHq.−4 BCq.=SP+PH quad.L×SP+PH=SPq.+2 SPH+PHq.L×SP+PH. Addantur utrobi{que} 2 KPH+L×SP+PH−SPq.−PHq. & fiet L×SP+PH=2 SPH+2 KPH, seu SP+PH ad PH ut 2 SP+2 KP ad L. Unde datur PH tam longitudine quam positione. Nimirum si ea sit corpo∣ris in P velocitas, ut latus rectum L minus fuerit quam 2 SP+2 KP, jacebit PH ad eandem partem tangentis PR cum linea PS, adeo{que} figura erit Ellipsis, & ex datis umbilicis S, H, & axe prin∣cipali SP+PH, dabitur: Sin tanta sit corporis velocitas ut la∣tus rectum L aequale fuerit 2 SP+2 KP, longitudo PH infinita erit, & propterea figura erit Parabola axem habens SH parallel∣um lineae PK, & inde dabitur. Quod si corpus majori adhuc cum velocitate de loco suo P exeat, capienda erit longitudo PH ad alteram partem tangentis, adeo{que} tangente inter umbilicos pergente, figura erit Hyperbola axem habens principalem aequa∣lem differentiae linearum SP & PH, & inde dabitur. Q.E.I.

Corol. 1 Hinc in omni Conisectione ex dato vertice principa∣li D, latere recto L, & umbilico S, datur umbilicus alter H ca∣piendo DH ad DS ut est latus rectum ad differentiam inter la∣tus

Page 60

rectum & 4 DS. Nam proportio SP+PH ad PH ut 2 SP ad L, in casu hujus Corollarii, fit DS+DH ad DH ut 4 DS ad L, & divisim DS ad DH ut 4 DS−L ad L.

Corol. 2. Unde si datur corporis velocitas in vertice principa∣li D, invenietur Orbita expedite, capiendo scilicet latus rectum ejus, ad duplam distantiam DS, in duplicata ratione velocitatis hujus datae ad velocitatem corporis in circulo ad distantiam DS gyrantis: (Per Corol. 3. Theor. VIII.) dein DH ad DS ut latus rectum ad differentiam inter latus rectum & 4 DS.

Corol. 3. Hinc etiam si corpus moveatur in Sectione quacun∣{que} Conica, & ex orbe suo impulsu quocun{que} exturbetur; cog∣nosci potest orbis in quo postea cursum suum peraget. Nam componendo proprium corporis motum cum motu illo quem im∣pulsus solus generaret, habebitur motus quocum corpus de dato impulsus loco, secundum rectam positione datam, exibit.

Corol. 4. Et si corpus illud vi aliqua extrinsecus impressa con∣tinuo perturbetur, innotescet cursus quam proxime, colligendo mutationes quas vis illa in punctis quibusdam inducit, & ex se∣riei analogia, mutationes continuas in locis intermediis aestiman∣do.

Do you have questions about this content? Need to report a problem? Please contact us.