Philosophiæ naturalis principia mathematica autore Js. Newton ...

About this Item

Title
Philosophiæ naturalis principia mathematica autore Js. Newton ...
Author
Newton, Isaac, Sir, 1642-1727.
Publication
Londini :: Jussu Societatis Regiae ac Typis Josephi Streater ...,
1687.
Rights/Permissions

To the extent possible under law, the Text Creation Partnership has waived all copyright and related or neighboring rights to this keyboarded and encoded edition of the work described above, according to the terms of the CC0 1.0 Public Domain Dedication (http://creativecommons.org/publicdomain/zero/1.0/). This waiver does not extend to any page images or other supplementary files associated with this work, which may be protected by copyright or other license restrictions. Please go to http://www.textcreationpartnership.org/ for more information.

Subject terms
Mechanics -- Early works to 1800.
Celestial mechanics -- Early works to 1800.
Link to this Item
http://name.umdl.umich.edu/A52251.0001.001
Cite this Item
"Philosophiæ naturalis principia mathematica autore Js. Newton ..." In the digital collection Early English Books Online. https://name.umdl.umich.edu/A52251.0001.001. University of Michigan Library Digital Collections. Accessed May 15, 2025.

Pages

Page 54

Prop. XIII. Prob. VIII.
Moveatur corpus in perimetro Parabolae: requiritur Lex vis centripe∣tae tendentis ad umbilicum hujus figurae.

Maneat constructio Lemmatis, sit{que} P corpus in perimetro Para∣bolae, & a loco Q in quem corpus proxime movetur, age ipsi SP Parallelam QR & perpendicularem QT, necnon Qv tangenti pa∣rallelam & occurentem tum diametro YPG in v, tum distantiae SP in x. Jam ob similia triangula Pxv, MSP & aequalia unius latera SM, SP, aequalia sunt alterius latera Px seu QR & Pv. Sed, ex Conicis, quadratum ordinatae Qv aequale est rectangulo sub latere recto & segmento diametri Pv, id est (per Lem. XIII.) rectangulo 4 PS×Pv seu 4 PS×QR; & punctis P & Q coeun∣tibus, ratio Qv ad Qx (per Lem. 8.) fit aequalitatis. Ergo Q×q. eo in

[illustration]
casu, aequale est rectangu∣lo 4 PS×QR. Est au∣tem (ob ae∣quales angu∣los Q×T, MPS, PMO) Qxq. ad QTq. ut PSq. ad SNq. hoc est (per Corol. I. Lem. XIV.) ut PS ad AS, id est ut 4 PS×QR ad 4 AQR, & inde (per Prop. 9. Lib. V Elem.) QTq. & 4 AS×QR aequantur. Ducantur haec aequalia in SPq./QR, & fiet SPq.×QTq./QR aequale SPq.×4 AS: & propterea (per Corol. Theor. V.) vis centripeta est recipro∣ce ut SPq.×4 AS, id est, ob datam 4 AS, reciproce in dupli∣cata ratione distantiae SP.Q.E.I.

Page 55

Corol. I. Ex tribus novissimis Propositionibus consequens est, quod si corpus quodvis P, secundum lineam quamvis rectam PR, quacun{que} cum velocitate exeat de loco P, & vi centripeta quae sit reciproce proportionalis quadrato distantiae a centro, simul agite∣tur; movebitur hoc corpus in aliqua sectionum Conicarum umbi∣licum habente in centro virium; & contra.

Corol. II. Et si velocitas, quacum corpus exit de loco suo P, ea sit, qua lineola PR in minima aliqua temporis particula describi po∣ssit, & vis centripeta potis sit eodem tempore corpus idem move∣re per spatium QR: movebitur hoc corpus in Conica aliqua sect∣ione cujus latus rectum est quantitas illa QTq./QR quae ultimo sit ubi lineolae PR, QR in infinitum diminuuntur. Circulum in his Corollariis refero ad Ellipsin, & casum excipio ubi corpus recta descendit ad centrum.

Do you have questions about this content? Need to report a problem? Please contact us.