Philosophiæ naturalis principia mathematica autore Js. Newton ...

About this Item

Title
Philosophiæ naturalis principia mathematica autore Js. Newton ...
Author
Newton, Isaac, Sir, 1642-1727.
Publication
Londini :: Jussu Societatis Regiae ac Typis Josephi Streater ...,
1687.
Rights/Permissions

To the extent possible under law, the Text Creation Partnership has waived all copyright and related or neighboring rights to this keyboarded and encoded edition of the work described above, according to the terms of the CC0 1.0 Public Domain Dedication (http://creativecommons.org/publicdomain/zero/1.0/). This waiver does not extend to any page images or other supplementary files associated with this work, which may be protected by copyright or other license restrictions. Please go to http://www.textcreationpartnership.org/ for more information.

Subject terms
Mechanics -- Early works to 1800.
Celestial mechanics -- Early works to 1800.
Link to this Item
http://name.umdl.umich.edu/A52251.0001.001
Cite this Item
"Philosophiæ naturalis principia mathematica autore Js. Newton ..." In the digital collection Early English Books Online. https://name.umdl.umich.edu/A52251.0001.001. University of Michigan Library Digital Collections. Accessed June 10, 2025.

Pages

Prop. LXIV. Prob. XL.
Viribus quibus Corpora se mutuo trahunt crescentibus in simplici rati∣one distantiarum a centris: requiruntur motus plurium Corporum inter se.

Ponantur imprimis corpora duo T & L commune habentia gravitatis centrum D. Describent haec per Corollarium primum Theorematis XXI. Ellipses centra habentes in D, quarum magni∣tudo ex Problemate V. innotescit.

Trahat jam corpus tertium S priora duo T & L viribus acce∣leratricibus ST, SL, & ab

[illustration]
ipsis vicissim trahatur. Vis ST per Legum Corol. 2. re∣solvitur in vires SD, DT; & vis SL in vires SD, DL. Vires autem DT, DL, quae sunt ut ipsarum summa TL, at{que} adeo ut vires accelera∣trices quibus corpora T & L se mutuo trahunt, additae his viribus corporum T & L, prior priori & posterior posteriori, componunt vires distantiis DT ac DL proportionales, ut prius, sed viribus prioribus majores; adeo{que} (per Corol. 1. Prop. X. & Corol. 1 & 7. Prop. IV.) efficiunt ut corpora illa describant Ellipses ut prius, sed motu celeriore. Vi∣res reliquae acceleratrice〈…〉〈…〉 & SD, actionibus motricibus SD×T & SD×L, quae sunt ut ••••rpora, trahendo corpora illa aequaliter & secundum lineas TI, LK ipsi DS parallelas, nil mutant situs e∣arum ad invicem, sed faciunt ipsa aequaliter accedere ad lineam IK; quam ductam concipe per medium corporis S, & lineae DS per∣pendicularem. Impedietur autem iste ad lineam IK accessus

Page 170

faciendo ut Systema corporum T & L ex una parte, & corpus S ex altera, justis cum velocitatibus, gyrentur circa commune gra∣vitatis centrum C. Tali motu corpus S (eo quod summa virium motricium SD×T & SD×L, distantiae CS proportionalium, tra∣hitur versus centrum C) describit Ellipsin circa idem C; & punc∣tum D ob proportionales CS, CD describet Ellipsin consimilem, e regione. Corpora autem T & L viribus motricibus SD×T & SD×L, (prius priore, posterius posteriore) aequaliter & secun∣dum lineas parallelas TI & LK (ut dictum est) attracta, per∣gent (per Legum Corollarium quintum & sextum) circa cen∣trum mobile D Ellipses suas describendo, ut prius. Q.E.I.

Addatur jam corpus quar∣tum

[illustration]
V, & simili argumento concludetur hoc & punctum C Ellipses circa omnium com∣mune centrum gravitatis B describere; manentibus mo∣tibus priorum corporum T, L & S circa centra D & C, sed paulo acceleratis. Et eadem methodo corpora plura adjungere licebit. Q.E.I.

Haec ita se habent ubi corpora T & L trahunt se mutuo viri∣bus acceleratricibus majoribus vel minoribus quam trahunt corpo∣ra reliqua pro ratione distantiarum. Sunto mutuae omnium at∣tractiones acceleratrices ad invicem ut distantiae ductae in corpo∣ra trahentia, & ex pracedentibus facile deducetur quod corpo∣ra omnia aequalibus temporibus periodicis Ellipses varias, circa m∣nium commune gravitatis centrum B〈…〉〈…〉 plano immobili descri∣bunt. Q.E.I.

Do you have questions about this content? Need to report a problem? Please contact us.