Philosophiæ naturalis principia mathematica autore Js. Newton ...

About this Item

Title
Philosophiæ naturalis principia mathematica autore Js. Newton ...
Author
Newton, Isaac, Sir, 1642-1727.
Publication
Londini :: Jussu Societatis Regiae ac Typis Josephi Streater ...,
1687.
Rights/Permissions

To the extent possible under law, the Text Creation Partnership has waived all copyright and related or neighboring rights to this keyboarded and encoded edition of the work described above, according to the terms of the CC0 1.0 Public Domain Dedication (http://creativecommons.org/publicdomain/zero/1.0/). This waiver does not extend to any page images or other supplementary files associated with this work, which may be protected by copyright or other license restrictions. Please go to http://www.textcreationpartnership.org/ for more information.

Subject terms
Mechanics -- Early works to 1800.
Celestial mechanics -- Early works to 1800.
Link to this Item
http://name.umdl.umich.edu/A52251.0001.001
Cite this Item
"Philosophiæ naturalis principia mathematica autore Js. Newton ..." In the digital collection Early English Books Online. https://name.umdl.umich.edu/A52251.0001.001. University of Michigan Library Digital Collections. Accessed April 29, 2025.

Pages

Prop. XLIX. Theor XVII.
Si rota globo concavo ad rectos angulos intrinsecus insistat & revolven∣do progrediatur in circulo maximo; longitudo itineris curvilinei

Page 148

quod punctum quodvis in Rotae Perimetro datum, ex quo globum tetigit, confecit, erit ad duplicatum sinum versum arcus dimidii qui globum toto hoc tempore inter eundum tetigit, ut differentia di∣ametrorum globi & rotae ad semidiametrum globi.

Sit ABL globus, C centrum ejus, BPV rota ei insistens, E centrum rotae, B punctum contactus, & P punctum datum in pe∣rimetro rotae. Concipe hanc Rotam pergere in circulo maximo

[illustration]
ABL ab A per B versus L, & inter eundum ita revolvi ut ar∣cus AB, PB sibi invicem semper aequentur, at{que} punctum illud P in Perimetro rotae datum interea describere viam curvilineam AP. Sit autem AP via tota curvilinea descripta ex quo Rota glo∣bum tetigit in A, & erit viae hujus longitudo AP ad duplum si∣num versum arcus ½ PB, ut 2 CE ad CB. Nam recta CE (si

Page 149

opus est producta) occurrat Rotae in V, jungantur{que} CP, BP, EP, VP, & in CP productam demittatur Normalis VF. Tan∣gant PH, VH circulum in P & V concurrentes in H, secet{que} PH ipsam VF in G, & ad VP demittantur Normales GI, HK. Cen∣tro item C & intervallo quovis describatur circulus nom secans rectam CP in n, Rotae perimetrum Bp in o & viam curvilineam AP in m, centro{que} V & intervallo Vo describatur circulus secans VP productam in q.

Quoniam Rota eundo semper revolvitur circa punctum con∣tactus B, manifestum est quod recta BP perpendicularis est ad lineam illam curvam AP, quam Rotae punctum P describit, at{que} adeo quod recta VP tanget hanc curvam in puncto P. Circuli nom radius sensim auctus aequetur tandem distantiae CP, & ob si∣militudinem figurae evanescentris Pnomq & figurae PFGVI, ra∣tio ultima lineolarum evanescentis Pm, Pn, Po, Pq, id est ra∣tio incrementorum momentaneorum curvae AP, rectae CP & ar∣cus circularis BP, ac decrementi rectae VP, eadem erit quae linea∣rum PV, PF, PG, PI respective. Cum autem VF ad CF & VH ad CV perpendiculares sunt, anguli{que} HVG, VCF propte∣rea aequales; & angulus VHP, (ob angulos quadrilateri HVEP ad V & P rectos,) complet angulum VEP ad duos rectos, adeo{que} angulo CEP aequalis est, similia erunt triangula VHG, CEP; & inde fiet ut EP ad CE ita HG ad HV seu HP, & ita KI ad KP, & divisim ut CB ad CE ita PI ad PK, & duplicatis consequen∣tibus ut CB ad 2 CE ita PI ad PV. Est igitur decrementum lineae VP, id est incrementum lineae BV−VP, ad incrementum lineae curvae AP in data ratione CB ad 2 CE, & propterea (per Corol. Lem. IV.) longitudines BV−VP & AP incrementis illis genitae sunt in eadem ratione. Sed existente BV radio, est VP cosinus anguli VPB seu ½ BEP, adeo{que} BV−VP sinus versus ejusdem anguli, & propterea in hac Rota cujus radius est ½ BV, erit BV−VP duplus sinus versus arcus ½ BP. Ergo AP est ad duplum sinum versum arcus ½ BP ut 2 CE ad CB. Q.E.D.

Page 150

Lineam autem AP in Propositione priore Cycloidem extra Globum, alteram in posteriore Cycloidem intra Globum distinc∣tionis gratia nominabimus.

Corol. 1. Hinc si describatur Cyclois integra ASL & bisece∣tur ea in S, erit longitudo partis PS ad longitudinem VP (quae duplus est sinus anguli VBP, existente EB radio) ut 2 CE ad CB, at{que} adeo in ratione data.

Corol. 2. Et longitudo semiperimetri Cycloidis AS aequabitur lineae rectae, quae est ad Rotae diametrum BV ut 2 CE ad CB.

Corol. 3. Ideo{que} longitudo illa est ut rectangulum BEC, si mo∣do Globi detur semidiameter.

Do you have questions about this content? Need to report a problem? Please contact us.