* Where oft your Priestley. l. 166. The same of Dr. Priestley is known in every part of the earth where science has penetrated. His various discoveries respecting the analysis of the atmosphere, and the production of variety of new airs or gasses, can only be clearly understood by reading his Experiments on Airs, (3 vols. octavo, Johnson, London.) the following are amongst his many discoveries. 1. The discovery of nitrous and dephlogisticated airs. 2. The exhibition of the acids and alkalies in the form of air. 3. Ascertaining the purity of respirable air by nitrous air. 4. The restoration of vitiated air by vegetation. 5. The influence of light to enable vegetables to yield pure air. 6. The conversion by means of light of animal and vegetable substances, that would otherwise become putrid and offensive, into nourishment of vegetables. 7. The use of respiration by the blood parting with phlogiston, and imbibing dephlo∣gisticated air.

The experiments here alluded to are, 1. Concerning the production of nitrous gas from dissolving iron and many other metals in nitrous acid, which though first discovered by Dr. Hales (Static. Ess. Vol. I. p. 224) was fully investigated, and applied to the important purpose of distinguishing the purity of atmospheric air by Dr. Priestley. When about two measures of common air and one of nitrous gas are mixed together a red effervescence takes place, and the two airs occupy about one fourth less space than was previously occupied by the common air alone.

2. Concerning the green substance which grows at the bottom of reservoirs of water, which Dr. Priestley discovered to yield much pure air when the sun shone on it. His method of collecting this air is by placing over the green substance, which he believes to be a vegetable of the genus conferva, an inverted bell-glass previously filled with water, which subsides as the air arises; it has since been found that all vegetables give up pure air from their leaves, when the sun shines upon them, but not in the night, which may be owing to the sleep of the plant.

3. The third refers to the great quantity of pure air contained in the calces of metals. The calces were long known to weigh much more than the metallic bodies before calcination, insomuch that 100 pounds of lead will produce 112 pounds of minium; the ore of manganese, which is always found near the surface of the earth, is replete with pure air, which is now used for the purpose of bleaching. Other metals when exposed to the atmosphere attract the pure air from it, and become calces by its combination, as zinc, lead, iron; and increase in weight in proportion to the air, which they imbibe.

 [ return to text ]