The TR-808 Cymbal: a Physically-Informed, Circuit-Bendable, Digital Model

Kurt James Werner, Jonathan S. Abel, Julius O. Smith
Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University, Stanford, California
[kwerner|abel|jos]@CCRMA.stanford.edu

ABSTRACT

We present an analysis of the cymbal voice circuit from a classic analog drum machine, the Roland TR-808 Rhythm Composer. A digital model based on this analysis (implemented in Cycling 74’s Genext) retains the salient features of the original. Developing physical models of the device’s many sub-circuits allows for accurate emulation of circuit-bent modifications (including component substitution, changes to the device’s architecture, and voltage starve) – complicated behavior that is impossible to capture through black-box modeling or structured sampling. This analysis will support circuit-based musicological inquiry into the history of analog drum machines and the design of further mods.

1. INTRODUCTION

Despite significant work that has been done on cloning and emulating the TR-808, there is an almost complete lack of published analyses on the circuit.1 We have begun to fill this void with [3], which develops a physically-informed, circuit-bendable, digital model of the TR-808’s bass drum voice circuit. In the following paper, we will use related techniques (well-represented in virtual analog literature) to analyze the TR-808’s cymbal voice circuit.

The goals of this research are to partition the TR-808’s cymbal circuit into functional blocks, create a physically-informed analysis of each block, model each block in software, and evaluate the results. Throughout, we will pay special attention to developing an analysis in terms of the electrical values of circuit elements.

It is particularly important to analyze the TR-808 in this way, because of the extant misinformation surrounding the device.2 The TR-808’s rich mythology has been well-covered in music journalism, but this has distracted from focused study of the individual voice circuits. The TR-808’s cymbal voice circuit represents a significant leap forward in the design of analog drum machine voices—it is a complex, efficient circuit that reasonably approximates a real cymbal sound.

The TR-808 cymbal has only a few user-controllable parameters: decay, tone, and level. To access the latent potential of the circuit, drum machine modders add additional tuning and architecture-level controls, even going so far as to allow external audio to be routed through the circuit [6]. This tradition parallels the development of circuit-bending and other music hardware hacking, and could potentially be lost in the process of digitally emulating an 808.

By adopting a physically-informed approach, and favoring an analysis that elucidates the design intent, this work supports informed mods of the circuit. A more complicated analysis could obscure the logic of the device’s construction, with minimal gains in accuracy. Framing the analysis in terms of component values simplifies the simulation of mods based on component substitution.3 Partitioning the circuit into blocks allows for the simulation of mods based on changes to the circuit’s architecture.4

We give an overview of the circuit in §2 and an analysis of each part of the circuit and their interconnections in §§3–11. This is followed by a discussion of modeling techniques in §12 and results in §13.

2. OVERVIEW

Fig. 1 shows a schematic diagram of the TR-808 cymbal circuit. This annotated schematic labels important nodes and currents, and shows how the circuit is broken down into blocks: Schmitt trigger oscillators (see §3), band pass filters (see §4), trigger logic (see §5), an attack smoother (see §6), and an output buffer and level control (see §11).

Fig. 2 shows a block diagram of the digital model of the cymbal circuit. Both figures

1 Previous work includes [2], which offers a qualitative discussion of [1] in the context of imitating classic synthesized cymbal voices with modular synthesizers.

2 For instance: the user manual for the Novation Drum Station (an early rack-mount TR-808/TR-909 emulator) says the cymbal sound is generated by “multiple noise sources,” which is patently false. Some improbable stories about the machine’s design turn out to be true. Don Lewis, an early pioneer of drum machine modification, worked on the design of the 808 and even developed techniques that influenced its voice design [4]. He relates a story from his visit to Roland’s Tokyo offices in the late 70s, where he worked with chief engineer Tadao Kikumoto. “That day he had a bread board of an 808 and was showing me what was going on inside—he sort of bumped up against the breadboard and spilled some tea in there and all of a sudden he turned it on and got this pssh sound—it took them months to figure out how to reproduce it, but that ended up being the crash cymbal in the 808. There was nothing else like it. Nobody could touch it.” [5]

3 For instance: adding tuning controls to the oscillators, band pass filters, high pass filters; additional controls to the static envelope generators; or extending the tone controls.

4 For instance: allowing each of the 6 rectangular wave oscillators or the bands to be individually muted, bypassing filters, or injecting external audio.

Copyright: ©2014 K. J. Werner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
were quick to pull these controls out to the front panel. intended for factory tuning, early drum machine hackers by opening up the TR-808’s internals. Although this was circuit, are tunable via trimpots that are only accessible The last two, which form the basis of the Cowbell voice that tunes the oscillator to a particular frequency. single resistor and capacitor provides an RC time constant acts as the bistable element, and a passive network of a of these astable multivibrators, the Schmitt trigger inverter oscillators, producing these clusters. The output of each of the three swing-type VCAs is applied to a corresponding Sallen-Key high pass filter. From there, each band is applied to a tone control stage and a level control, which sums the three bands back together and buffers the output.

3. SCHMITT TRIGGER OSCILLATORS

The TR-808’s Cowbell, Cymbal, Open Hihat, and Closed Hihat voice circuits all work by filtering and enveloping rectangular waves. In fact, they all share a common bank of six of these oscillators, ingeniously implemented with a single HD14584 hex Schmitt trigger inverter chip. In each of these astable multivibrators, the Schmitt trigger inverter acts as the bistable element, and a passive network of a single resistor and capacitor provides an RC time constant that tunes the oscillator to a particular frequency. Oscillators #1–4 are hardwired to a particular frequency. The last two, which form the basis of the Cowbell voice circuit, are tunable via trimpots that are only accessible by opening up the TR-808’s internals. Although this was intended for factory tuning, early drum machine hackers were quick to pull these controls out to the front panel. This primarily had the effect of a producing a tunable cowbell voice. However, they also form an important part of the cymbal sound as well. The inverter has only low and high output states (VOL and VOH), and transitions between them are subject to hysteresis. When an input voltage Vt rises above a positive-going threshold voltage VT+, the output swings to VOL. When Vt falls below a negative-going threshold voltage VT−, the output swings to VOH. Since the positive-going and negative-going threshold voltages for a Schmitt trigger input are different, the circuit will oscillate back and forth as the capacitor is alternatively charged and discharged. Considering the continuous-time cases of a charging and discharging capacitor separately yields the capacitor charge and discharge times:

\[t_{\text{charge}} = RC \cdot \ln \left(\frac{V_{OH} - V_{T-}}{V_{OH} - V_{T+}} \right) \]
\[t_{\text{discharge}} = RC \cdot \ln \left(\frac{V_{OL} - V_{T+}}{V_{OL} - V_{T-}} \right) \]

These times sum to the total period of oscillation \(T = t_{\text{charge}} + t_{\text{discharge}} \). Since the oscillator switches between output states VOL and VOH, its amplitude is trivially equal to their difference. The duty cycle is, by definition, the proportion of time that the oscillator spends in its high state. Now, the salient features (frequency \(f = 1/T \), amplitude \(A = V_{OH} - V_{OL} \), and duty cycle \(D = t_{\text{charge}}/T \)) are available creators of 808 clones and emulators. See: [7], Tactile Sounds’ TS-808, Analogue Solutions’ Concussion, Acidlab’s Miami, &c. Robin Whittle points to component tolerance (and, by extension, variations in tuning for oscillators 5–6) as the source of the unique character of individual 808 cymbals [6].

5 This technique was well-known to hardware hackers as early as the 1960s, and forms an important building block of so-called “Lunetta Synths”—CMOS-based devices inspired by the designs of Stanley Lunetta.

6 Nowadays, this technique is well-documented among hackers and should be consulted alongside the analysis of each block in the following sections.

To produce a cymbal note, the µPD650C–085 CPU applies a common trigger and (logic high) instrument data to the trigger logic. The resulting 1 ms long pulse is delivered to the envelope generators via an attack smoother. The output of this smoother drives four envelope signals, which are applied to three swing-type VCAs, where they control the amplitude of three bands of filtered rectangular wave clusters. Two different active band pass filters sum and filter the output of six Schmitt trigger inverter oscillators, producing these clusters. The output of each of the three swing-type VCAs is applied to a corresponding 3.1 Sallen-Key high pass filter. From there, each band is applied to a tone control stage and a level control, which sums the three bands back together and buffers the output.

Figure 1. TR-808 cymbal schematic (adapted from [1]).
The six oscillators have nominal frequencies (or ranges) of 205.3, 369.6, 304.4, 522.7, 359.4–1149.9, and 254.3–627.2 Hz. Oscillators #5–6 have internal trimpots (TM2 and TM1) in series with their resistor, for factory tuning to specific frequencies (800 and 540 Hz, respectively). 9

By design, the HD14584 is powered with 5 volts, yielding a duty cycle of \(D = 47.98\% \) and an amplitude of \(A = 5 \) volts for each oscillator. 10

All six oscillators are summed via voltage dividers in a passive mixing network. The output of this network is applied to the input of the band pass filters. Respecting superposition (grounding the other oscillator outputs), an example calculation of this attenuation (for oscillator #1) is:

\[
D = \ln \left(\frac{V_{OL} - V_{OH}}{V_{OL} - V_{OH}} \right) / \ln \left(\frac{V_{OL} - V_{OH}}{V_{OL} - V_{OH}} \right). \tag{3}
\]

Fig. 3 shows a comparison between the sum of all six oscillators (the signal applied to each band pass filter) and tabulated data from a SPICE 11 simulation of the circuit. 12

![Figure 2. TR-808 cymbal emulation block diagram.](image)

4. BAND PASS FILTERS

The two active band pass filters 13 each filter the combination of the six rectangular waves. What follows is a representative analysis and simulation of band pass filter #1. Identical methods were used for #2.

Assuming ideal op-amp behavior, nodal analysis of band pass filter #1 yields a transfer function of the form:

\[
H_{bp1}(s) = \frac{V_{bp1}}{V_{sum}} = \frac{\beta_2 s^2 + \beta_1 s}{\alpha_3 s^3 + \alpha_2 s^2 + \alpha_1 s + \alpha_0}, \tag{5}
\]

with coefficients:

\[
\beta_2 = -R_{56}R_{57} (C_{13} + C_{14}) C_{10} \\
\beta_1 = -R_{57} C_{10} \\
\alpha_3 = R_{58}R_{57}R_{52}C_{13}C_{14}C_{10} \\
\alpha_2 = R_{58}R_{57}C_{13}C_{14} + R_{58}R_{52} (C_{13} + C_{14}) C_{10} \\
\alpha_1 = R_{58}C_{13} + R_{56}C_{14} + R_{52} C_{10} \\
\alpha_0 = 1 .
\]

![Figure 3. Sum of all oscillators (V_{sum}).](image)

Fig. 4 shows the magnitude response of each band pass filter. Band pass filter #1 has a center frequency around 3440 Hz and band pass filter #2 has a center frequency around 7100 Hz. These band pass filters strongly accentuate the upper overtones of the square waves, while deemphasizing their fundamental frequencies.

13 whose topologies are closely related to the so-called “bridged-T network”, a bridged-T Zobel network in the negative-feedback path of an op-amp, that is used in each of the 808’s voice circuits [3]
The effect of the varying accent level is complex, and depends heavily on nonlinear downstream subcircuits: the attack of \(V_{\text{ct}} \), present (logic high), a 1-ms long pulse is passed to the collector of \(Q_3 \), and \(VR_3 \), whose ON voltage is set by \(VR_3 \), with a buffered version of \(V_{\text{ct}} \) (with its range narrowed to 7–14 V, depending on \(VR_3 \) [1]). When \(V_{\text{ct}} \) is present (logic high), a 1-ms long pulse is passed to the collector of \(Q_3 \).

The attack smoother applies a smoothed trigger \(V_{\text{smooth}} \) to three envelope generators via \(D_6–D_9 \). These envelopes serve as amplitude control for each swing-type VCA. What follows is a representative analysis and simulation of envelope generator #1. Identical methods were used for #2–3.

In envelope generator #1, an emitter follower buffers the first stage (EG #1.1). The output of the emitter follower drives two more stages (EG #1.2 and EG #1.3).

The first stage EG #1.1 is comprised of \(Q_2 \), \(R_5 \), \(R_6 \), \(R_{10} \), \(R_{15} \), and \(R_{B9} \) “ANDs” the instrument data \(V_{\text{id}} \) with a buffered version of \(V_{\text{ct}} \) (with its range narrowed to 7–14 V, depending on \(VR_3 \) [1]). When \(V_{\text{ct}} \) is present (logic high), a 1-ms long pulse is passed to the collector of \(Q_3 \).

The effect of the varying accent level is complex, and depends heavily on nonlinear downstream subcircuits: the attack smoother, envelope generators, and the swing-type VCAs.

Figure 6. Attack smoother output, no accent, time domain.

6. ATTACK SMOOTHER

The circuit comprised of \(Q_{19} \), \(R_{24}–R_{56} \), and \(C_{35} \)” smooths” the attack of \(V_{\text{trig}} \), the pulse that the trigger logic produces. Although the physics of this sub-circuit are difficult to work out in closed form, a one pole filter of the following form approximates the behavior of this circuit:

\[
H_{as}(s) = \frac{V_{\text{smooth}}}{V_{\text{trig}} - V_{BE}} = \frac{1}{1 + \tau s},
\]

where \(V_{BE} \) is the voltage drop from the base of \(Q_{19} \) to its emitter, and \(\tau \) is an RC time constant. The values of these constants are found by least-squares minimization to be:

\[
V_{BE} = 0.7258, \quad \tau = 1.0244 \times 10^{-4}.
\]

Fig. 6 shows good agreement between this simplified model and tabulated data from SPICE.

7. ENVELOPE GENERATORS

The attack smoother applies a smoothed trigger \(V_{\text{smooth}} \) to three envelope generators via \(D_6–D_9 \). These envelopes serve as amplitude control for each swing-type VCA. What follows is a representative analysis and simulation of envelope generator #1. Identical methods were used for #2–3.

In envelope generator #1, an emitter follower buffers the first stage (EG #1.1). The output of the emitter follower drives two more stages (EG #1.2 and EG #1.3).

The first stage EG #1.1 is comprised of \(D_6 \), \(R_{93} \), \(VR_2 \), and \(C_{41} \). A simplified diode model\(^{14}\) is leveraged to separate the attack and release phases, allowing simulation by numerical solution of a switched first-order ordinary differential equation (ODE).

During the attack phase (while \(V_{B} < V_{\text{smooth}} - V_{\text{on}} \), and \(D_6 \) acts as a short), an equation that approximates \(V_{B} \) is:

\[
V_{B} = V_{\text{in}} - V_{\text{on}}.
\]

During the release phase (while \(V_{B} > V_{\text{smooth}} \), and \(D_6 \) acts as an open circuit), nodal analysis yields:

\[
\frac{dV_{B}}{dt} = -\frac{V_{B}}{VR_{2}R_{93}C_{41}},
\]

where \(VR_{2}k \) is the resistance of the decay control with maximum resistance \(VR_2 \) and knob position \(k \in [0.0, 1.0] \). At higher decay settings, the RC time constant of decay increases, and the decay for this band is longer.

\(V_{\text{on}} \) is estimated in the least-squares sense by a fit to tabulated data from a SPICE simulation during the attack portion on the envelope. This yields \(V_{\text{on}} = 0.5899 \).

\(^{14}\) One that assumes the diode spends little time around the corner of its I–V characteristic and can be treated as a switch:

\[
R_{\text{diode}} = \begin{cases}
\infty & \text{if } V_{\text{diode}} < V_{\text{on}} \\
0 & \text{if } V_{\text{diode}} \geq V_{\text{on}}
\end{cases}
\]
An emitter follower Q_{20} produces $V_{EG\#1.1}$, a buffered version of V_B. Its output is taken at Q_{20}’s emitter, with a voltage gain of ≈ 1 and a negative offset V_{BE}. V_{BE} is estimated just like V_{on}, which yields $V_{BE} = 0.6195$.

The output of this emitter follower is applied to two passive RC networks, EG #1.2 and EG #1.3. Nodal analysis yields a continuous-time transfer function and a memoryless relationship:

$$H_{EG\#1.2} = \frac{V_{EG\#1.2}}{V_B} = \frac{R_{104}}{sR_{104}R_{105}C_{EG} + R_{104} + R_{105}}$$ \hspace{1cm} (10)

$$H_{EG\#1.3} = \frac{V_{EG\#1.3}}{V_B} = \frac{R_{90}}{R_{90}R_{101} + R_{90}R_{92} + R_{101}R_{92}}$$ \hspace{1cm} (11)

$H_{EG\#1.2}$ is a high shelf filter, and $H_{EG\#1.3}$ is a simple passive voltage divider. Each part of the envelope circuit is solved numerically in time by using the explicit Forward Euler method.\footnote{15}

Fig. 7 shows good agreement between the time domain behavior of the physical model’s envelope generators and a reference SPICE simulation. The traces are plotted in log time to show more detail towards the start of the envelopes.

8. SWING-TYPE VCAS

So-called swing-type VCAs\footnote{16} perform nonlinear voltage-controlled amplification. They resemble common-emitter amplifiers, despite their non-standard biasing scheme, extra diode, and the fact the V_{CC} has been replaced by an applied envelope voltage. What follows is a representative analysis and simulation of swing-type VCA #1. Similar methods were used for #2–3.\footnote{17}

An analysis and close approximation to the behavior of a swing-type VCA is found by framing it as a modified common-emitter amplifier, working through its biasing details, performing a large-signal DC analysis when the transistor is in forward-active operation, and estimating a memoryless nonlinearity to approximate the behavior of the diode and the transistor’s saturation region operation.

8.1 VCA biasing

$R_{102} - R_{103}$ and C_{46} form a DC blocking high pass filter, with an offset V_B (which is estimated like before).

This kind of biasing scheme is inherently unstable to temperature change, and depends strongly on the Bipolar Junction Transistor’s (BJT) β parameter, which varies significantly from component to component. For this reason, this sort of biasing is usually discouraged\footnote{10}. Here, it leads to clipping—a wild swing of the output between $V_{EG\#1.2}$ and $V_{lowerEdge}$, apparent intended behavior.

8.2 Large-Signal DC Analysis

A BJT in forward-active operation is partially described by an equation (an approximation to the Ebers-Moll model) relating the emitter current i_E to the voltage drop from the base to the emitter, V_{BE}:

$$i_E = I_{ES} \left(\frac{V_{BE}}{e^{\frac{V_{BE}}{kT}} - 1} \right),$$ \hspace{1cm} (12)

where I_{ES} is the reverse saturation current of the base–emitter p–n junction and V_T is the thermal voltage.\footnote{19}

Since i_B is much smaller than the others, it is reasonable to approximate $i_C = i_E$ via KCL. Now, ignoring output loading, we can get a naïve expression for V_{out} by finding the voltage drop across the collector resistor R_{104}:

$$V_{estimated\#1} = V_{EG\#1.2} - R_{104}I_{ES} \left(\frac{V_{BE}}{e^{\frac{V_{BE}}{kT}} - 1} \right).$$ \hspace{1cm} (13)

8.3 VCA Nonlinearity

The diode gates the output when $V_{EG\#1.2}$ is low enough. Without the diode, the output of the VCA would never shut all the way off. The approximation in Equation (13) is fairly accurate for negative values of V_{BE}. However, it takes neither the gating action of the diode nor the fact that the transistor can operate in the saturation region into account. These two behaviors are approximated by estimating the lower edge of the output as a function of $V_{EG\#1.2}$ and calculating the output voltage $V_{VCA\#1}$ as a nonlinear function of $V_{EG\#1.2}$, $V_{lowerEdge}$ and $V_{estimated\#1}$.

Unsurprisingly (due to the presence of two p–n junctions), $V_{lowerEdge}$ is well-approximated by the sum of two stretched exponential functions and an offset:

$$V_{lowerEdge} = \alpha_0 e^{\frac{-\beta_1}{VT}V_{EG\#1.2}^2} + \alpha_1 e^{\frac{-\beta_2}{VT}V_{EG\#1.2}} + \alpha_2.$$ \hspace{1cm} (14)

Curve-fitting\footnote{20} yields the coefficients shown in Table 1. The clipping behavior of the diode and the transistor’s behavior in its saturation region are approximated by a nonlinear equation of V_{env}, $V_{lowerEdge}$ and $V_{estimated\#1}$:

$$V_{VCA\#1} = \frac{V_{estimated\#1} - V_{env}}{1 + \frac{V_{estimated\#1} - V_{lowerEdge}(1)^{\frac{1}{n}}}{V_{env}}^\frac{1}{n}} + V_{env}.$$ \hspace{1cm} (15)

\footnote{15} $z \{x(t) + 1 \} = x(n + T, f \{x(t)\})$

\footnote{16} This odd name is given by [1]. [8.1] should offer a clue to its meaning.

\footnote{17} For swing-type VCA #2, there are two envelope sources (EG #1.2 and EG #2). For swing-type VCAs #2-3, there are additional capacitors to ground around the diodes, so analysis is complicated slightly, requiring the use of ODEs.

\footnote{18} Normally between 10^{-12} to 10^{-15} amperes

\footnote{19} A function $V_T = kT/q$ of temperature, Boltzmann’s constant $k \approx 1.3806 \cdot 10^{23}$ joules/kelvin, and the charge of an electron $q \approx 1.6022 \cdot 10^{-19}$ coulombs. $V_T \approx 25.85$ mV at room temperature (300 K).

\footnote{20} via Matlab’s cftool
This is a modified version of the clipping equation from [11]. The parameter α controls the “sharpness” of the function’s corners. A value of $\alpha = 3.5^{21}$ gives a good visual fit to a tabulated SPICE simulation. Fig. 8 shows VCA #1’s behavior in the time domain.

9. HIGH PASS FILTERS

What follows is a representative analysis and simulation of high pass filter #1. Identical methods were used for #2–3. High pass filter #1 (H_{h1}) is a 2nd-order high pass Sallen-Key filter [14] with an emitter follower (Q_{25}) as its buffer amplifier element. Assuming the emitter follower acts as a perfect buffer, this yields a continuous-time transfer function [15]:

$$H_{h1}(s) = \frac{V_{h1}}{V_{VCA#1}} = \frac{\beta_2 s^2}{\alpha_2 s^2 + \alpha_1 s + \alpha_0},$$

(16)

with coefficients:

$$\beta_2 = R_{124} R_{127} C_{48} C_{50}$$
$$\alpha_2 = R_{124} R_{127} C_{48} C_{50}$$
$$\alpha_1 = R_{124} C_{48} + R_{124} C_{50}$$
$$\alpha_0 = 1.$$

High pass filter #2 (H_{h2}) is a 2nd-order, high pass, non-unity-gain Sallen-Key filter with an op-amp as its buffer amplifier element.

High pass filter #3 (H_{h3}) is a 3rd-order high pass Sallen-Key filter with an op-amp as its buffer amplifier element. Using an op-amp in place of an emitter-follower allows for the design of non-unity-gain buffering. This manifests as resonance at the corner frequency (around 10500 Hz) in the magnitude response.

Fig. 4 shows the magnitude responses of the three high pass filters.

10. TONE STAGE

The tone stage is a highly-interconnected passive network of resistors and capacitors, which can be described by three transfer functions, $H_{t1} = V_{tone}/V_h$, $H_{t2} = V_{tone}/V_h$, and $H_{t3} = V_{tone}/V_h$. These transfer functions are fifth order, and the expressions for their filter coefficients are far too lengthy to print in this work or to provide much insight by visual inspection. They are reported on this work’s companion site.\footnote{23}

Fig. 9 shows a family of magnitude responses for each of the three bands. The primary effect of the tone control is to change the amount of attenuation in the third band. However, the center frequencies of all bands and the attenuation of the first and second bands are also somewhat affected. The tone control of the TR-808 cymbal voice shares the property of weakly-separated, non-orthogonal controls with guitar amplifier tone stacks.\footnote{16}

11. OUTPUT BUFFER AND LEVEL CONTROL

The output buffer combines the three cymbal bands, through the tone stage, and offers level control. Assuming an ideal op-amp, there will be no current through, and therefore no voltage across, R_{118}. Nodal analysis yields a transfer function of the form:

$$H_{le}(s) = \frac{V_{out}}{V_{t1}} = \frac{\beta_2 s^2 + \beta_1 s}{\alpha_2 s^2 + \alpha_1 s + \alpha_0},$$

(17)

with coefficients:

$$\beta_2 = -R_{128} V R_{0} k C_{90} C_{78}$$
$$\beta_1 = -R_{128} C_{90}$$
$$\alpha_2 = R_{128} V R_{0} k C_{77} C_{78}$$
$$\alpha_1 = (R_{128} + V R_{0}) C_{78}$$
$$\alpha_0 = 1.$$

where $V R_{0} k$ is the resistance of the level control with maximum resistance $V R_{0}$ and knob position $k \in [0.0, 1.0]$. Fig. 10 shows the magnitude response of the transfer functions at various level settings. In addition to attenuation,
the output level control buffer also acts as a differentia-
tor in the audio band—it has a frequency response with a
6 dB/octave rising slope.

12. MODELING

We implemented a digital model with Cycling 74’s Gen\(^{-}\),
a low-level DSP environment in Max/MSP. The model
contains stock controls for the cymbal decay, tone, and
level. Additionally, the model contains bends for tuning
and muting individual Schmitt trigger oscillators, tuning or
bypassing each band pass and high pass filter, and controll-
ing the release of envelope generators #1 and #3. One bend
that has a surprising effect on the sound is replacing \(R_{53} \)
with a logarithmic potentiometer. Recalling Equation (4),
this bend controls the attenuation of each oscillator on its
way into the band pass filters and dramatically alters the
timbre of the cymbal.

All discrete-time filter coefficients are calculated with
the bilinear transform. The bilinear transform is used to
map continuous-time transfer functions to discrete time,
though it has an inherent frequency warping which ad-
versely affects high frequencies. This frequency warping
can be mitigated by oversampling and/or tuning of the bi-
linear transform’s \(c \) parameter. By tuning this parameter
for each filter, exactly one analog frequency can be pre-
cisely mapped to the correct digital frequency (the cutoff
or center frequency of a filter gives good results) [17].

Since many of the filters in the TR-808 cymbal voice
circuit have response features that are high in frequency
with respect to normal audio sampling rates (i.e. \(f_s =
44100 \) Hz), this frequency warping must be addressed. All
eamples in this work are rendered at \(4 \times \) oversampling
(\(f_s = 44100 \times 4 \) Hz), so they suffer only negligibly from
frequency warping.

There will be some bandwidth expansion in the VCA
stage, due to its nonlinearity. Although this creates the
potential for aliasing, the cymbal circuit creates tightly-
packed, inharmonically-related partials by design. As well,
some of the aliasing will be mitigated by the oversampling.
Unsurprisingly, the presence of low amplitude aliased fre-
quency components seem to be perceptually insignificant.

Some parts of the model are oversimplified. The VCAs
and envelope generators, in particular, are modeled with
significant simplifications, and some of their nonlinearit-
ies ignored. Non-idealities in high pass filter #1’s emitter-
follower buffer are ignored. To break the delay-free loops
arising from mutual interaction between the VCAs and en-
velope generators, fictitious unit delays are inserted. Since
the envelope signals change very slowly with respect to the
sampling rate, the error that is introduced by the unit de-
lays is not very significant. However, in general, inserting
fictitious unit delays into systems with feedback can have
negative effects on accuracy and stability [18].

13. RESULTS AND CONCLUSIONS

Fig. 11(a) is a spectrogram/waveform pair of a reference
cymbal note, produced via SPICE simulation. Fig. 11(b)
ies the same output from the physical model, which shows
good agreement with the SPICE simulation.

Figs. 11(c)–11(f) show some of the bends that are avail-
able in the model. These bends can dramatically alter the
cymbal’s timbre and texture.

Fig. 11(d) shows the effect of lowering the values of re-
sistors \(R_{56} \) and \(R_{58} \) by a factor of one half. This raises their
center frequencies, affects their \(Qs \), and generally elimi-
nates much of the low-frequency content.

Fig. 11(e) shows the effect of lowering \(R_{53} \). This affects
the level of the signal going into the band pass filters, and
causes the signal to only sporadically clip in the VCAs—
this has an effect on the texture of the output.

Fig. 11(f) shows the effect of a 50% voltage starve. This
technique is common in circuit bending and guitar ped-
al modification [25] but remains unexplored in the context
of the TR-808. [26] Lowering the voltage supplied to the
HD14584 (by changing voltage divider pair \(R_{60}–R_{61} \) a-
flicts the inverter’s device properties \(V_T–, V_{TR}, V_{DL}, \) and
\(V_{OH} \). [27] This will affect the tuning, amplitude, and duty
cycle of each oscillator. Due to the nonlinearity of the
VCAs, this will have complex timbral consequences.

Audio examples and other supplementary materials can
be found online at this work’s companion site [28].

Acknowledgments

Some preliminary analysis insights were developed with
Kevin Tong as part of professor Greg Kovacs’s Analog
Electronics course. Thanks to Melissa Kagen for help with
editing.

[A] see [19] for an DIY example, and Danelectro’s Danelectrode for a
commercial example.

[B] although it is hinted at in [7].

[C] A reasonable estimate of these properties as a function of supply volt-
ages in the range 3–15 V is obtained by extrapolation of the electrical
characteristics at 5, 10, and 15 volts [8].

[D] [28] https://ccrma.stanford.edu/˜kwerner/papers/
icmcsmc2014.html
Figure 11. Waveform/spectrogram pairs of cymbal voice circuit simulations: (a) a baseline SPICE simulation for comparison, (b) a baseline emulation with the physically-informed model, (c) muting 3 of the rectangular wave oscillators and tuning the remaining 3 to an A major chord, (d) altering the band pass filter responses by lowering R_{56} and R_{58}, (e) effect of lowering R_{53}, and (f) voltage starve. All are rendered at $4 \times$ oversampling, with the decay knob at 25%, tone knob at 50%, and level knob at 50%.

14. REFERENCES

