Real-time Synthesis on a Multi-processor Network

Takebumi ITAGAKI
Takebumi.itagaki@dur.ac.uk
+School of Engineering
University of Durham
South Road
DURHAM DH1 3LE
UK.

Alan PURVIS
Alan.Purvis@dur.ac.uk
Durham Music Technology

Peter D. MANNING
Peter.D.Manning@dur.ac.uk
*Department of Music
University of Durham
Palace Green
DURHAM DH1 3RL
UK.

Abstract

At the 1990 ICMC, this research group presented a paper on a multi-processor based system [Bailey et al., 1990] and demonstrated a prototype module consisting of 16 transputers on a single card. During the intervening period, ten of these cards have been developed into an operational audio processing network, using 160 x TH00 floating-point transputers, clocked at 17.5 MHz. This paper describes the network and the first implementations of real-time direct synthesis on it, using a MIDI-based control system. The key research issue concerns the optimal usage of processor inter-communication and scheduling for audio processors.

1. Introduction

1.1. Transputer

The Transputer™ family of devices, designed by INMOS Ltd., offer versatile building blocks for the construction of multi-processor computing engines that are capable of establishing a high degree of parallelism. A TH00 transputer consists of a 32-bit CPU, a 64-bit Floating Point Unit, four standard transputer communication links, 4k-byte of on-chip RAM, a memory interface and peripheral interfacing on a single chip, using a 1.5 micron CMOS process. The general purpose DSP chip achieves a performance of 8.77 MIPS at a processing speed of 17.5 MHz. Its FPU delivers a sustained floating point performance in excess of 1.32 MFLOPS in 32-bit, and 0.96 MFLOPS in 64-bit. There are four link interfaces that can transfer data at a sustained uni-directional rate of 1.74 Mbytes/sec or 2.35 Mbytes/sec in bi-directional mode.

As a single processor, the transputer's performance is not exceptional for audio processing when compared with state of the art DSP chips. For example, the Texas Instruments C40 executes 25 MFLOPS in 32-bit floating point mode at a processing speed of 50 MHz and Motorola's DSP56000 achieves 10.25 MIPS at a clock speed of 20 MHz. However, once a number of transputers are connected together the resultant configuration of processors gives audio engineers a powerful and flexible resource. To achieve optimum performance, these devices have to be linked together in configurations that take full advantage of their distributed communication capability.

1.2. The 160 transputer Network

Since 1988, this research group has reported on issues concerning multi-transputer audio processors; for example [Purvis et al., 1988] and [Bowler et al., 1989]. A prototype architecture for a transputer network was described and demonstrated at the ICMC 1990, Glasgow [Bailey et al., 1990]. This has subsequently been developed into a fully operational audio processor, using 160 x TH00 floating-point transputers inter-connected as a ternary tree as shown in Figure 1.

![Figure 1: Basic Topology of the transputer Tree](image)

Sound Synthesis Techniques

ICMC Proceedings 1994
A TH300 transputer has four communication links that permit the connection of a ternary tree, which provide short path lengths between arbitrary nodes [see Bayer, 1991]. The fundamental single element employed by the machine is a modified version of a basic ternary gate in that the siblings are directly connected.

Four of these single elements, a total of 16 transputers, can be fitted into a standard 3U printed circuit board. This represents a processing power of 140 MIPS per board. The transputers are hard-wired to each other permanently, but the software configuration of the network is flexible and re-programmable. An essential feature of the design is the absence of any external memory on the board: only the 4k-byte of on-chip memory is available per transputer. This results in a total of 64k bytes across the network for our test-board system, and a maximum processing power of 1400 MIPS. The rationale behind this design is that it is a real-time system should not require a large amount of memory for storage. The absence of external memory necessitates compact algorithms for execution at audio sampling rates.

2. Synthesis Method

For our initial evaluation of the performance characteristics of this synthesis engine, we have chosen to implement a recursive sine synthesis algorithm. This makes maximal demands on memory for multiple oscillators implemented in parallel. The recursive method generates higher performant waveforms by computing the projection of a rotating vector on the x- and y-axes.

Considering the second-order linear difference equation and applying the Z-transform:

\[Y(z) = a_0 Y(z^{-1}) + a_1 Y(z^{-2}) + X(z) \]

\[H(z) = \frac{Y(z)}{X(z)} = (1 - a_0 z^{-1} - a_1 z^{-2})^{-1} \]

Solving for the roots of the denominator leads to the case \(a_0^2 + 4a_1 \leq 0 \), where the poles of \(H(z) \) are complex conjugates. They appear in the z-plane at \(\pm \Re \text{p} \pm j \Im \text{p} \).

Here, \(a_0 \) is the \(n \times n \) \(\Re \text{p} \) \(\Im \text{p} \) \(z \) is the sample frequency and \(f_z \) is frequency of a tone. \(b \) is the radius of the poles from the origin in the z-plane and \(\theta \) is the angle made with the real axis. The equation for \(H(z) \) can be rewritten as:

\[H(z) = \frac{1}{(1 - b^2 z^{-2})} \]

For \(b = 1 \), this leads to the following difference equation:

\[y_{n+1} = 2 \cos b \ y_{n-1} - y_{n-2} \]

To generate an oscillator of amplitude \(a \), the difference equation is started from \(y_{n-1} = 0 \), and the amplitude is set by scaling the correct value of \(y_{n-1} \) to \(\sin b \).

At a 32 kHz sampling frequency each transputer is able to provide 8 recursive oscillators that can be controlled independently in both amplitude and frequency. If the sampling frequency is increased to 44.1 kHz (CD quality) the capacity reduces to 5 oscillators per transputer.

Calculations for the oscillators are executed in 32-bit floating point format. When a sound sample exists from an oscillator unit, it is converted into an integer number which is then accumulated with other synchronous samples throughout the network. Although the Digital-to-Analogue converter (DAC) has only a 14-bit bandwidth, 32-bit integer format is used internally since this achieves optimal performance from the transputer software and also ensures that changes in amplitude levels will not result in a loss of quantisation accuracy.

3. Applications

3.1 “88-note organ”

A custom-designed MIDI-to-transputer interface board provides the communication link between the transputer network and a suitable MIDI performance device. For the purposes of this project, the keyboard has been built, generating “key number”, “note on”, “note off” and “note velocity” control commands in polyphonic mode. The interface board translates the MIDI information to the host transputer, which processes the information for distribution to the transputers in the network.

Since the process of synthesis to be employed are entirely additive, working from basic sine waves, the generation of interesting timbres becomes a function of how many individual sine wave oscillators are weighted to each note, and how they are weighted in terms of both frequency and amplitude. An acoustic piano has 88 keys covering a fundamental frequency range from 27.5 Hz to 4186 Hz. Since there
are only 81 transputers at the bottom of the tree
structure some optimisation is necessary. An initial step a prototype configuration for 81
notes was implemented and tested. In this
configuration, the network is capable of
accommodating 81 oscillator groups (one group
per transputer) which provide 567 recursive sine
oscillators in total, at a 32 kHz sampling rate.
Considering the harmonic content of notes to be
synthesised and the limiting bandwidth of the
DAC, it is not always necessary to assign all the
oscillators on a transputer for the generation of
a particular timbre throughout the note range.
Some components indeed will lie above the
Nyquist frequency and introduce fold over
errors, if unintentionally generated. These
factors introduce some measure of economy.
For example, some of the transputers can be
shared by two notes. Further gains can be made
by utilising transputers at intermediate levels of
the tree in combining their primary function as
connectors with additional synthesis tasks.
As a result of this study of the network's
performance we concluded that a transputer
otherwise working as just a connector could
additionally perform half the tasks of an
oscillator group. This optimisation increased
the capacity of the network to 108 oscillator
groups which provide 722 recursive sine
oscillators in total at a 32 kHz sampling rate.
These oscillator groups can be controlled
independently by MIDI signals, providing up to
88-note polyphony with the added enhancement
of touch sensitivity control. Within the current
limitations of sixteen oscillators per note, a wide
variety of timbres can be pre-programmed and
performed. The system performs reliably
providing the event rate is less than about 150
keystrokes per second. If a higher rate of MIDI
information is fed into the network, the system
will temporarily halt until the control
information has been delivered to each
oscillator unit. The need to include a sound
sample buffer between the DAC driver and
the root transputer introduces a constant 32 muc of
delay between the start of performance events
and its realisation. In most performance
situations, however, this could not be detected.

3.2. Dynamic Allocation of Notes
3.2.1. Implementation
In our current configuration of the network as
an 88-note organ, the situation arises in normal
performance situations where a static allocation
of oscillators to specific notes involves a high
degree of redundancy. Since 88-note polyphony
is not normally required, given that even two
performers playing a duet on a single keyboard
have only twenty fingers at their disposal, there
are significant advantages to be gained from an
allocation system that allows the maximum
deployment of oscillators per note, thus
increasing the range of timbres that can be
generated.
Although the implementation of optimal
custering algorithms, whereby closely spaced
harmonics are approximated by one oscillator,
has yet to be fully investigated, considerable
benefits have already been gained from the
implementation of a simple dynamic scheduling
system. In this configuration the system has
been programmed to accommodate 27
simultaneous notes which can be synthesised
with an enhanced harmonic content using 24
oscillators per note and improved dynamic
control. In this case a set of five transputers can
be fully deployed in a typical arrangement
where three transputers are programmed as
oscillators, a fourth provides up to 5 envelope
functions for assignment to the above and the
fifth acts as a signal mixer.
Given the complexities of such a large parallel
network the scheduling of events presents a
number of difficulties. In devising a simple
dynamic scheduling system a number of
problems specific to a parallel processing
environment have to be overcome, in particular,
the risk of creating a 'deadlock' where
unforeseen sequences of events can result in two
or more processes becoming interdependent
and thus unable to complete. The resolution of these
conflicts appears to increase the latency of the
system.

3.2.2. Control Strategy
In adopting a tree-structured approach to
configuring the network, it would seem logical
to use an approach where the distribution of
control information flows down through the
branches of the tree and the results of the
synthesis process are accumulated in the reverse
direction for output at the top level. In practice,
when both strategies are implemented
simultaneously, the density of traffic especially
on the input side can result in a serious
bottleneck at the point of entry. Rather than
modify the basic tree structure, which in turn
would fundamentally alter the operational
characteristics of the network, advantage has been taken of the special architecture of the transputer which allows external communications through any unattached link. By diverging some control information to side links near the top of the tree, this bottleneck can be contained without significant loss of efficiency with regard to internal communications. Despite the above modification it still remains the case that the distribution between communication and synthesis tasks changes progressively from one almost entirely devoted to the former at the top of the tree to the reverse situation at the bottom.

4. Summary

We have confirmed the viability of the 160 transputer network as a real-time audio processor in particular as an additive synthesis engine. The potential processing power of the network can only be realised with optimal software configuration. At present we have succeeded in making available 752 real-time oscillators at 32 kHz with individual control of amplitude and frequency. Faster control rates can be provided at the expense of the number of active oscillators. A dynamic allocation results 27 note polyphony with up to 24 oscillators per note. The system provides a programmable test-bed to investigate real-time control issues for audio synthesis.

5. Acknowledgements

Alan Purvis and Peter D. Manning gratefully acknowledge the generous donation of processors from INMOS Ltd., UK. Taketomo Itagaki would like to acknowledge travel funds from the University of Durham.

References

