Generics, Conservativity, and Kind-Subordination

Bernhard Nickel

Harvard University

Abstract

Many approaches to the semantics of generic sentences posit an unpronounced quantifier gen. However, while overt quantifiers are conservative, gen does not seem to be. A quantifier Q is conservative iff instances of the following schemas are equivalent: Q As are F and Q As are As that are F. All ravens are black is obviously equivalent to All ravens are ravens that are black, yet ravens are black is not equivalent to ravens are ravens that are black. This may cast doubt on the viability of quantificational analyses of generics. This paper proposes a theory of why such “conservativity” generics are problematic that is compatible with the conservativity of gen and also accounts for perennially troublesome examples such as books are paperbacks and bees are workers.

1. Introduction

Much of our thought and talk is directed towards kinds, expressed with so-called generic sentences. Some generics characterize a kind, or perhaps individuals insofar as they are members of that kind, by way of a property that individuals can bear as well, as in (1)–(3).

(1) Ravens are black.
(2) Diamonds are valuable.
(3) Lions have manes.

Such characterizing generics raise a number of problems. Two are particularly germane to the issues I want to discuss. Generics are compatible with the existence of exceptions, members of the kind that do not have the property at issue, such as albino ravens for (1). The first problem is to describe the content of generics in such a way that we can understand this exception-tolerating property. A natural idea is to analyze generics statistically, as claims about perhaps most members of the kind. But a second problem complicates this approach. Generics appear to convey that more than a mere statistical relationship holds between kind membership and the property predicated, as the contrast between (4) and (5) shows.

(4) All ravens are black.
(5) All ravens are ravens that are black.
(4) College students work hard.
(5) College students are right-handed.

While (4) is a claim that we can easily make sense of and know how to argue about, (5) strikes us as weird, simply because being right-handed is somehow an odd thing to say of college students in a generic. Yet from a purely statistical perspective, that contrast is hard to make sense of. If anything, (5) should be better than (4).

Many semantic approaches to generics posit an unpronounced quantifier, represented as gen, as a starting point for semantic analysis. The task of a semantic theory then becomes giving the meaning of that operator. The point of introducing it is both empirical and methodological. Doing so allows theorists to formulate ways in which genericity interacts with other semantic mechanisms to produce the theoretically relevant features of generic sentences. It also allows theorists to argue for aspects of their account by pointing to parallels between the posited generic quantifier and other, independently understood quantifiers. Positing such a generic quantifier also incurs commitments, and this paper is an investigation of one such commitment.

Quantifiers in natural language have a common logical structure: a quantificational element, its restrictor, and its scope. In applying the insights of generalized quantifier theory to natural language, it’s possible to analyze the meaning of nominal quantifiers as relations between the sets that are the extensions of the predicates involved. In some $\text{students work hard}$, the quantificational expression is some, its restrictor students, and its nuclear scope work hard. The meaning of some is that the intersection of the extensions of restrictor and scope is non-empty. All expresses that the extension of the restrictor is a subset of the scope.

This general format for representing the meaning of quantifiers makes it possible to formulate hypotheses about patterns that are common to more than one quantifier. The most famous such hypothesis holds that all quantifiers in all human languages are conservative in the following sense.

Conservativity Quantifier Q is conservative iff for all sets A, B:

$$[Qx : Ax](Bx) \iff [Qx : Ax](Ax \cap Bx).$$

Familiar quantifiers exhibit this pattern very clearly.

(6) All ravens are black \iff All ravens are ravens that are black.
(7) Some ravens are black \iff Some ravens are ravens that are black.
(8) Many ravens are black \iff Many ravens are ravens that are black.

That all nominal quantifiers in human language are conservative is a contingent claim. It’s easy to define a non-conservative quantifier: let $n\text{-all}$ mean that the complement of the restrictor is a subset of the scope. N-all Fs is thus roughly equivalent to All Non-Fs. By way of illustration, (9) and (10) have the same truth-conditions, and (11) illustrates the failure of conservativity.

(9) N-all ravens are black.
(10) All non-ravens are black.
(11) N-all ravens are black. $\not\iff$ N-all ravens are ravens that are black.

The hypothesis that all nominal quantifiers in natural language are conservative is well-confirmed and important. If true, it shows that a very abstract logical constraint is built into the very architecture of the human language faculty.

Does this extremely well-confirmed generalization about quantifiers in natural language hold for the posited quantifier gen? Apparently not:\footnote{Let me mention an issue that I want to set aside. Conservativity is for-}
(12) Ravens are black. \(\not\in\) Ravens are ravens that are black.
(13) Tigers have stripes. \(\not\in\) Tigers are tigers that have stripes.
(14) Lions have manes. \(\not\in\) Lions are lions that have manes.

Let’s call generics of the form \(As \textit{are} \ As \textit{that} \ F\) conservativity generics. (12)–(14) clearly show that ordinary generics are not equivalent to their conservativity counterparts. In light of this observation, the proponent of a generic quantifier could accept that \(gen\) is a semantic anomaly and simply not conservative. This is very unattractive, especially for a theorist who justifies key aspects of her semantic proposal for generics by appealing to the continuities between her proposed \(gen\) and standard quantifiers. Her most promising path forward explains the unacceptability of the conservativity generics while preserving the possibility that \(gen\) itself is conservative. On this approach, the tests for conservatism that work for ordinary quantifiers go awry for generics. They yield false negatives.

Before we move on, let me mention one potential complication. Conservativity doesn’t hold for all expressions that express some sort of quantification, most famously \(only\). So the hypothesis that all natural language quantifiers are conservative must be supplemented with a specification of what is to count as a quantifier. This is why the original discussion of generalized quantifiers (Barwise and Cooper, 2002) focused only on nominal ones.\(^6\)

\(^6\) Similar problems arise for \(many\), which seems to have a non-conservative reading (see Romero, 2017; Westerståhl, 1985). While \(many\) is clearly a quantifier, there are also expressions that might look like quantifiers at first glance but perhaps aren’t best analyzed along these lines (see Glanzberg, 2008, for the case of \(both\)).

8. On the adverb of quantification approach, see, e.g., Cohen (1999a,b); Leslie (2008); Sterken (2015); Wilkinson (1991).
9. Generics are neither upward nor downward entailing in either their restrictor or scope.

(i) Lions have manes. \(\not\in\) Female lions have manes.
(ii) Albino ravens are white. \(\not\in\) Ravens are white.
(iii) Lions have manes. \(\not\in\) Lions have purple manes.
(iv) Chickens lay eggs. \(\not\in\) Chickens are hens.

(i) illustrates the failure of the downward entailment in the restrictor, (ii) the failure of upward entailment in that position, (iii) illustrates the failure of downward entailment in the scope, (iv) the failure of upward entailment in that position.
classes. And one may well worry that the machinery of compositional semantics isn’t the right tool for the job in that case. If we proceed case-by-case, the semantics may come to seem little more than restatements of the data. Looking at whether a generic quantifier, if such there be, is conservative affords us precisely the kind of systematic phenomenon that promises to give our theorizing a bit more traction.

This is what I aim to do in this paper. I’ll offer an account of the oddity of conservativity generics that is compatible with the conservativity of \textit{gen}. This account immediately extends to other, perennially problematic examples for quantificational approaches to generics, such as (15) and (16).

(15) Bees are workers.
(16) Books are paperbacks.

What unifies these examples with conservativity generics is the fact that they are nominal predicates.

In the critical and positive discussions to follow, I’ll represent generic sentences abstractly in a semi-regimented form, rather than in the common and elegant quasi-natural language schema \textit{As are F}. The latter schema does not tell us whether the presence of the copula is obligatory or just an artifact of notation, and a lot in this paper turns on whether the predicate in a generic is nominal or not. Instead, generics generally will be represented as in (17), and conservativity generics specifically as in (18).

(17) \textit{gen} x: Ax(Fx)
(18) \textit{As are As that are F}

In other words, nothing is taken for granted about the particular syntactic form of predication for generics generally, but conservativity generics are nominal predications with relative clauses.

I’ll begin my discussion by looking at extant tools that might allow us to explain what goes wrong with conservativity generics (§2). There, I take a brief look at a very common semantic mechanism: the restrictor of the generic quantifier is influenced by the predicate of a generic. I’ll argue that this readily-available tool cannot be used to account for the badness of conservativity generics. The focus of my critical remarks in this paper (§3) will be on Cohen (2004), the only extant work that addresses phenomena in the vicinity of conservativity generics. The concerns I raise there will motivate my own positive account (§§4–6), one that draws in part on previous work in Nickel (2016).

2. Variation in the Restrictor

Can we account for the data by deploying tools already at our disposal? Many quantificational theories of generics suggest that the restrictor of the generic quantifier is determined, at least in part, by its scope. Let me consider a particular example, the theory of Cohen (1999a,b). I focus on Cohen’s view because he has given a fairly detailed account of how the restrictor is influenced by the predicate. I’ll briefly discuss Nickel (2016), as well.10

On Cohen’s basic semantics (see Cohen, 1999b), generic sentences are interpreted as propositions about probability. His starting point is the thought that \textit{[gen} x: Ax(Fx)\textit{]} is true iff the probability that a randomly chosen \textit{A} satisfies \textit{F} is greater than .5. We can safely translate claims about the probability with which a property is present into claims about the frequency with which it’s present. (19) captures this starting point.

(19) \textit{[gen} x: Ax(Fx)\textit{]} iff \textit{[most} x: Ax(Fx)\textit{]}\n
There are many generics that don’t conform to this simple starting point: generics that are false even though the majority, even the vast majority, of \textit{As are Fs}, as well as generics that are true even though only a minority, even a very small minority, of \textit{As are Fs}. In order to handle these sorts of cases, Cohen introduces various ways to make the basic starting point more sophisticated.

10. These accounts stand in for a range of theories that all suggest that the restrictor of the generic quantifier is influenced by the material in its scope, though the theories differ on what influences the restrictor and how. Cf. Asher and Pelletier (2013); Krifka et al. (1995); ter Meulen (1986).
To deal with cases of true generics where only a minority of members conform, Cohen introduces additional material into the restrictor of the generic quantifier. Consider (3), repeated here.

(3) Lions have manes.

Cohen wants to capture the intuition that female lions are literally irrelevant to the truth of (3) because they do not fall within the domain of the quantifier. Once the quantifier is appropriately restricted, the majority analysis yields the correct prediction.

On his view, the property predicated in a generic is associated with a set of alternatives, always including that property itself, and the domain of the generic quantifier is restricted to those members of the kind that satisfy one of the alternatives. For (3), the alternatives are properties such as having bright tail-feathers or singing a mating song. So (3) is true iff most lions that either have a mane, or have bright tail-feathers, or sing a mating song, ... have a mane. Since female lions don't satisfy any of these alternatives, they are not in the domain of the generic quantifier, and hence the generic is predicted to be true, as desired.

How might this mechanism apply to conservativity generics, such as (20)?

(20) Ravens are ravens that are black.

Let’s assume the most complex possibility, that the set of alternatives to the predicate ravens that are black is the Cartesian product of alternatives to being a raven and alternatives to being black:

\[\{ \langle x, y \rangle \mid x \in \text{alt}(\text{Raven}), y \in \text{alt}(\text{Black}) \} \]

11. This is what Cohen calls the absolute reading of a generic. He also introduces relative readings (cf. Cohen, 1999b, 2001), but these are irrelevant to our discussion since all of the generics that I discuss in this paper are clearly and uncontroversially generics that Cohen would classify as absolute.

For each of these, we form the intersection of x and y, yielding a set of complex alternatives, including being a black raven, a white raven, a black lion, a white lion, etc. Call this R, which is used to restrict the generic quantifier.

(21) Most ravens that are in at least one of the sets in R are black ravens.

But given that only those sets in R will have a non-empty extension if x denotes ravens, (20) should have the same truth-conditions as ravens are black. So we cannot deal with the apparent failure of conservatism through this mechanism.

Similar remarks hold for the system in Nickel (2016). On this view, a generic As are F is interpreted in terms of normality. (1), ravens are black, is interpreted roughly as (22).

(22) All ravens that are normal with respect to the color of ravens are black.

If we apply this theory to (20), ravens are ravens that are black, the respect of normality is being normal with respect to the color and species of ravens. There’s only one way to be normal with respect to the species of ravens, and that is being a raven, so the more complex respect of normality at issue in (20) is equivalent to the respect of normality at issue in (22), making the interpretation of the two sentences equivalent in Nickel’s system, as well.

Variation in the restrictor of the generic quantifier does not help us. We will need to develop a new tool.

3. Cohen on Homogeneity

We’ve already looked at how Cohen deals with generics that are true, even though the corresponding majority claim is false: adding material to the restrictor. Cohen also has to account for generics that are false, even though the corresponding majority claim is true, and adding material to the restrictor cannot solve that problem. In the course of his discussion of this problem, he considers the contrast between (23) and
This discussion is the only extant one of phenomena that are akin to the badness of conservativity generics. For that reason, I want to look at whether Cohen’s theory can be extended to deal with them, even though he does not himself connect his discussion to the apparent failure of Conservativity. The remainder of this subsection will be devoted to presenting Cohen’s actual theory. §§ 3.1–3.3 will discuss how this theory might be extended.

He argues that the contrast in acceptability between (23) and (24) is due to a homogeneity constraint on generics.\footnote{It doesn’t matter for our purposes whether the constraint is a presupposition, an entailment, or a felicity condition. Cohen remains neutral on this point, and I will follow him here.} Let me introduce it with a simple example, (15).\footnote{Here and throughout, worker is a kind of bee, a worker bee, not a judgment of effortful occupation.}

(15) Bees are workers.

Intuitively, Cohen wants to capture the idea that though it’s true that most bees are workers, the bees that conform to the generic cluster together in a way that vitiates the claim.

Formally, Cohen makes use of partitions. When we divide a set into subsets in such a way that every member of the original set is in exactly one subset, we partition the original set, and the resulting subsets are the cells of the partition. The homogeneity constraint is formulated in terms of such partitions.\footnote{Adapted from Cohen (2004, 531) with minor alterations.}

Homogeneity Constraint The generic \([\text{gen} \ x: Ax] (Fx)\) presupposes that exactly one of the following holds:

(i) for every psychologically salient partition of the As resulting in cells \(C_1, \ldots, C_n\), the incidence of being \(F\) in each of \(C_1, \ldots, C_n\) is high, or

(ii) for every psychologically salient partition of the As resulting in cells \(C_1, \ldots, C_n\), the incidence of being \(F\) in each of \(C_1, \ldots, C_n\) is low.

Whenever we consider a generic, there may be multiple, psychologically salient ways of partitioning the kind at issue. The Homogeneity Constraint requires that the property at issue is fairly evenly distributed throughout the cells of each of these partitions.

Much turns on what makes a partition psychologically salient, since there is almost always a partition of the members of the kind that violates homogeneity: the partition into two cells, those members of the kind that have the property predicated in the generic and those members that do not.\footnote{Almost always, since this won’t be a problem for generics where all members of the kind conform, though those generics may have other problems.} So for Cohen, it’s key to constrain the psychologically salient partitions so as to not predict that intuitively acceptable generics are unacceptable on grounds of violating the Homogeneity Constraint.

Cohen offers several mechanisms that can make a partition salient, but for our purposes, only one is relevant. This mechanism is the interaction between a psychological capacity and features of a sentence.

The relevant psychological capacity is the capacity to represent kinds, and such representations can take two forms: tree-like and feature-spaces. The former represents a kind as having a position in a hierarchy of kinds (think “Tree of Life”), the latter simply represents a kind as a weighted combination of features. When either or both of these representations is available for the interpretation of a generic, that’s because the relevant representation is stored in the speaker’s memory antecedently to and independently of the interpretation of generics. This commitment to representations that are available to the speaker independently of and antecedently to the interpretation of any generic gives Cohen’s account empirical content, since we can investi-
When the kind mentioned in a generic is represented in a tree-like form, a partition of the kind into cells that correspond to the next lower-level in the hierarchy is psychologically salient. For example, when the kind bee is represented in a tree-like form, it is partitioned into cells that correspond to the subkinds worker, queen, and drone.

The question, then, is under what conditions a tree-like representation is used to represent the kind denoted by the subject term of a generic. Again, Cohen canvasses various possibilities, but only one is relevant. If the predicate is a nominal predicate, and it contains a nominal on the same taxonomic hierarchy as the subject, then that generic makes salient a tree-like representation of the kind (see Cohen, 2004, 536ff). Here, again, Cohen’s account has empirical content, since we can investigate independently of the task of interpreting a generic which stimuli activate one or another sort of representation to make it psychologically salient.

In the case of (15), bees are workers, being a worker is on the same hierarchy as being a bee, so (15) makes salient a partition of bees into the subkinds worker, queen, and drone. With respect to that partition and the property of being a worker, the set of bees is not homogeneous. Hence, (15) is unacceptable.

The same explanation applies to the contrast between (23) and (24). In (23), the verbal predicate have a placenta does not make salient a division of mammals into placental and marsupial mammals—the next-lower level on the taxonomic hierarchy the mammals sit on. Hence, (23) conforms to the Homogeneity Constraint. However, the mention of the kind mammal in the nominal predicate in (24) makes salient just such a partition. And with respect to this partition and the property of having a placenta, the set of mammals is not homogeneous. Hence, (24) does not satisfy the Homogeneity Constraint and is unacceptable.

3.1 Too Many Hierarchies
This account is naturally extended to a potentially very general theory of why Conservativity seems to fail for generics. The test sentences As are As that are F mention the same kind in both subject and predicate. That makes salient a tree-representation and thereby a partition according to the next lower level of that salient tree-representation. With respect to that partition, the As are not homogeneous with respect to whether they are F.

Whether the proposed generalization of Cohen’s account to conservativity generics is successful turns on just what the tree-like representation is that imposes the partition on the As. As I’ll argue now, there must be a separate taxonomy that corresponds to each conservativity generic, one that partitions the As into those that are As that are F and those that are not. But as I’ll argue as well, this presents a problem.

When it comes to the interpretation of ravens are ravens that are black, for example, the subkinds need to be the black ravens and the non-black ravens. If we simply considered the different varieties of raven as furnishing us with the salient partition, then the Homogeneity Constraint would be satisfied, since blackness is about equally prevalent in all of these subkinds. This is a very general (though not universal) case: the subvarieties of a kind, when there are such subvarieties, often share the characteristic features in roughly the same proportion as the kind itself. Consider the prevalence of stripes on tigers (and on the varieties of tigers) or brakes on bikes (and on the varieties of bikes). Hence, in order to retain the full generality of the Cohen-inspired explanation, for each unacceptable conservativity generic, there must be

16. See, for example, Cohen’s remarks about the subdivision of films at Cohen (2004, 541).
18. As the discussion in the main text already intimates, a nominal predicate isn’t just any predicate that contains a nominal—have a placenta is not a nominal predicate, though it contains a nominal. Nominal predicates are ones formed with the copula, and where the complement of the copula is headed by a nominal.
a corresponding taxonomic hierarchy that can furnish the cells of the salient partition with respect to which the conservativity generic fails to be homogeneous.

This commitment is incompatible with the rest of Cohen’s account. Recall that, as presented, Cohen’s account has two parts: speakers have a limited inventory of representations for kinds that is present in their minds antecedent to and independent of the interpretation of any generic, and the stimulus associated with the interpretation of a generic makes salient a selection from among these representations.

But it is extremely implausible that a speaker has the required range of hierarchies stored in her mind. This is a moment where the systematicity in the data surrounding the apparent failure of conservativity for generics really matters to the argument. So long as we only consider individual generics, as Cohen does in his work, it may be plausible that we have independent representations of the kinds and their taxonomic relations. But once we see that the range of data is incredibly broad and open-ended—the hallmark of a productive linguistic phenomenon—an account that places such high demands on the representational repertoire of the speaker for each generic looks untenable.

I think that, given Cohen’s commitments to the psychological reality and possibility of independently investigating different representations of kinds, this is a serious problem. Let me nonetheless consider a variation of the proposal that jettisons the commitment to antecedently available, stored representations of kinds. Instead, taxonomic hierarchies can be created on the fly in response to the task demand of interpreting a generic. So it’s still true that a representation of a kind that imposes a partition according to the next-lower level of the hierarchy is made salient by nominal predications on the same hierarchy, but the hierarchies themselves aren’t antecedently constrained.

This variation gives up on some of the methodological benefits Cohen was concerned to highlight. Since the taxonomies that are created on the fly are invoked only to explain a single phenomenon, the oddity of the particular conservativity generic that prompts their creation, there is no other set of phenomena that these taxonomies explain, nor are there other ways of triggering them.

What is more, this account requires a further stipulation that I cannot see how to motivate. It concerns the order in which the different parts of the new variant come into play. Consider (25).

(25) Dutchmen are sailors.

I take it that (25) unproblematically satisfies the Homogeneity Constraint, since (25) may well be true. On the proposal we are considering, (25) can trigger the creation of an ad hoc taxonomy that separates the Dutchmen into sailors and non-sailors. If this taxonomy is created first, then Dutchmen and sailors denote kinds that are on the same taxonomic hierarchy, which makes salient a partition of the Dutchmen into sailors and non-sailors, and relative to that partition, (25) violates homogeneity. This is a completely general problem for all generics with nominal predicates: if the taxonomy is created first, it follows immediately that the predicates in a nominal predication denote kinds on the same taxonomy, and hence that the generic violates homogeneity. But as (25) and similar examples show, there are many generics with nominal predicates that are perfectly felicitous and should not violate homogeneity.

These considerations show that the present proposal is either incoherent or trivial. On the one hand, examples such as ravens are ravens that are black, require that the ad hoc hierarchy that partitions ravens into black and non-black ravens be created in order to interpret the generic. On the other hand, examples such as Dutchmen are sailors require that no ad hoc hierarchy be created in order to interpret the generic. Hence, there cannot be a single, general answer to the question whether an ad hoc hierarchy is created. Hence, we need to decide on a case-by-case basis whether to create a hierarchy on the fly. But I cannot see any
general criterion to apply, short of knowing beforehand whether the
generic should violate homogeneity.

This argument is the main reason I reject Cohen’s account. There
are two more sorts of problems that concern individual cases. I dis-
cuss them not because they furnish knock-down counter-examples to
his system—an individual generic can be accommodated in various
ways. Rather, they are useful to keep in mind as pointing towards a
potentially more workable solution.

3.2 Too Tied to Syntax
Cohen’s account is quite sensitive to the syntax of the sentences in-
volved. Predications with a nominal denoting a kind make salient the
corresponding partitions, often leading to unacceptability, while ver-
al predications do not. However, it doesn’t seem as if this difference
actually makes a difference.

(25) Dutchmen are sailors.
(26) Dutchmen are Dutchmen who are sailors.
(27) Dutchmen are Dutch sailors.

It does not seem as if the syntactic difference between (26) and (27)
makes for a difference in acceptability. Yet (27) should not give rise to
a violation of the Homogeneity Constraint, since the nominal in (27)
is sailors, and the sailors aren’t on the same taxonomic hierarchy as the
Dutchmen.

3.3 Unacceptability in spite of Satisfaction of Homogeneity
Finally, consider (28).

(28) Hominids are humans.

The hominids are the taxonomic group immediately superior to the
humans, homo sapiens. At this point in the evolution of life on Earth,
there is exactly one sub-kind of the hominids, the humans. So (28)
should be fine from the perspective of the Homogeneity Constraint,
since the psychologically salient partition of the hominids only has one
cell and the Homogeneity Constraint is satisfied trivially. Yet (28) is
not acceptable.

Cohen’s account, then, has several benefits but also some costs.
Among the benefits is a generalization that is independent of the ap-
parent failure of conservativity for the generic quantifier: that generics
involving a nominal predicate that lies on the same taxonomic hierar-
chy as the subject NP make a corresponding partition salient, which
leads to unacceptability in generics that predicate belonging to a sub-
kind of a superkind, at least when the partition has more than one
cell. An acceptable account should capture this generalization, as well.
Among the costs are the representational demands the account places
on speakers, the sensitivity to the surface form of the sentences to
which it applies, and the fact that it seems to not take into account suf-
ficiently the differences among kinds, even when these kinds happen
to be coextensive, as in the case of hominids and humans. I’ll now turn
to an account that attempts to do better.

4. Background Semantic Theory for Generics
My explanation for the systematic badness of conservativity generics
relies on some hypotheses about the semantics of generics. Let me
begin by motivating these hypotheses.

As we saw at the start, the fundamental fact about generics is
that they tolerate exceptions, members of the kind that do not have
the property predicated in the generic. A related, though not quite
as widely appreciated, fact is that generics draw a distinction even
among the conforming members of the kind. Consider (1), ravens are
black. Some black ravens intuitively support the generic, while others
are irrelevant to it. A raven that goes through its ordinary developmen-
tal mechanism and ends up being black in that way is intuitively what
the generic is about. Call that a proper conformer. An albino raven that,
once it’s mature, is somehow altered and turned black conforms to the
generalization, but even then does not support its truth. This is a de-
viant conformer. We also would not find (1) to be inductively supported
by the observation of such dyed albinos. So part and parcel of a seman-
tic theory for generics is giving enough structure to the semantics to
allow us to draw not just the distinction between proper conformers
and exceptions, but between proper and deviant conformers, as well.

There are several accounts that seek to make good on this require-
ment. They all have in common that they privilege one mechanism
that leads to having the property predicated in the generic over others.
invokes mechanisms that partially constitute the kind, Sterken (2015)
allows mechanisms to be picked out by context in the interpretation of
at least some generics in at least some contexts, and Nickel (2016)
attempts to identify mechanisms by means of explanations. All of these
theories have to say more about how exactly a mechanism that sup-
ports the truth of a generic is picked out and distinguished from the
mechanisms that do not support its truth.

The account of why conservativity generics are odd that I give here
draws on the basics of Nickel (2016). To be a proper conformer—a nor-
mal member of a kind—is to participate in a certain mechanism. Such
a mechanism may, as in ravens are black, be a developmental one. For
generics in other domains, other sorts of mechanisms may be relevant.
What is common to all generics is that the relevant mechanism is iden-
tified as the mechanism that is described, in whole or in part, by an
answer to the question why at least some members of the kind have
the property at issue. To remain with the case of ravens are black, the
mechanism that a raven participates in precisely when it is a normal
raven is the one that is described in whole or in part by the answer to
the question why at least some ravens are black. This conception of nor-
mality feeds into the basic analysis of generics as universals restricted
to normal members of the kind, stated in (29).\(^{20}\)

\[(\text{gen } x: Ax)(Fx) \text{ is true iff all normal } As \text{ are } F. \]

The theory as stated so far is incredibly weak, and hence empirically
inadequate. It makes generics almost equivalent to existential claims.\(^{21}\)
To strengthen the analysis, the theory places further restrictions on
which answers to the relevant why-questions can be used to identify
a normal-making mechanism. For example, while it is possible to ex-
plain why some ravens are white—by pointing to the mechanism that
yields albino ravens—that explanation does not satisfy the constraints
in place for the interpretation of the generic ravens are white—perhaps
that the explanation must be about adaptations—which is why these
ravens do not count as normal and which is why, in turn, ravens are
white is not predicted to be true. The actual theory of what these con-
straints are is irrelevant to our present purposes. But we can already
see how this theory draws the distinction between the proper conform-
ers to a generic and the rest. An exception that doesn’t threaten the
truth of the generic is a member of the kind in which the relevant
mechanism does not get started, is derailed along the way, or is altered
after the fact in such a way as to produce a non-conforming member
of the kind. A deviant conformer is also one in which the mechanism
doesn’t get started, is derailed, or is altered, but in such a way that the
member of the kind still happens to conform.

The focus on explanation also gives content to the intuitive sense
that a generic expresses a non-accidental or not-purely-statistical re-
lationship between property and kind. Recall the contrast concerning
college students:

(4) College students work hard.
(5) College students are right-handed.

\(^{20}\) This statement glosses over the additional structure of normality in a re-
spect (cf. §2), since it’s irrelevant to the purposes at hand.

\(^{21}\) This doesn’t follow immediately, but the assumptions required for this im-
phasis to go through are themselves very weak. In outline: the presence of
just about any property among some members of a kind can be explained
somehow. By the lights of the theory as stated, that is sufficient for the generic
that ascribes the property to the kind to be true. For example, any color that
a raven might have can be explained somehow, whether by ordinary raven de-
velopment, by painting, dying, what have you. By the lights of the theory, all
generics that ascribe a color to ravens is therefore true.
On the explanation-centered account, a generic conveys that there is an explanatory relationship between belonging to the kind and having the property predicated, a relation that is distinct from mere statistical correlation.\(^{22}\) This explanation-based account of generics furnishes the framework within which I’ll develop my account of the badness of conservativity generics.

5. Incompatible Constraints on Answers

The interpretation of conservativity generics—As are As that are \(F\)—requires that the question why is it the case that some As are As that are \(F\)? have a true answer that exhibits the explanatory relevance of being an \(A\). But the structure of the sentence makes this impossible. This is why they cannot be true and they strike us as hard to interpret.

5.1 A General Constraint on Answers to Why-Questions

Suppose we ask why it is the case that \(p\), why this person is a sailor, why Jane is a politician, or why some ravens are black. It is clear that such a question is in order only if it is the case that \(p\), if this person really is a sailor, if Jane really is a politician, and if some ravens really are black. Only under that condition does the question have an answer. This is usually called the presupposition of the why-question.\(^{23}\) I mention this presupposition only to distinguish it from the constraint I will be concerned with.

Before I state that constraint, a bit more background on questions. For most questions, the work of specifying what makes something a true answer to a question neatly falls into two parts: stating the conditions a proposition has to satisfy in order to be an answer to the question—be that answer true or false—and specifying the truth-conditions of those propositions so that we can distinguish the true from the false answers. The content of the question is given by the first set of conditions, the conditions that a proposition has to satisfy in order to be an answer to the question.\(^{24}\) To give the content of what did Jane see?, we need to know what conditions a proposition must satisfy to be an answer to that question, which we can investigate largely independently of theorizing about the truth-conditions of the relevant propositions, in this case, propositions of the form Jane sees \(x\).\(^{25}\)

However, in the case of why-questions, it is far more controversial how to separate the answerhood conditions imposed by the content of the question from the truth-conditions of the sentences that express the propositions that satisfy these answerhood conditions, \(p\ because q\). Theorists differ, for example, on how context-sensitive the truth-conditions of because-claims are, and in particular, whether the truth-conditions are sensitive to a contextually salient why-question.\(^{26}\)

I will avoid this debate and simply speak of constraints on answers to why-questions, leaving open whether those constraints are part of the truth-conditions of a because-claim or part of the answerhood conditions imposed by a why-question. The difference won’t matter because I am interested in a constraint imposed by the sentence that takes the place of ‘\(p\)’ in the two schemata why is it the case that \(p\)? and \(p\ because q\). Since the constraint is imposed by a common element, it does not matter whether the constraint is part of the answerhood conditions of the former or the truth-conditions of the latter.

To pursue this discussion, I’ll regiment the form of a why-question at a relatively fine grain. A why-question always concerns the fact that a property is instantiated, be it by being attributed to an individual or as part of a quantified expression. That’s the property at issue in the

\(^{22}\) Since there are, at least potentially, many different sorts of explanations that are relevant to the interpretation of generics in different domains, that explanatory relationship can take many different forms. In particular, it need not be essentialist.

\(^{23}\) See, e.g., Belnap and Steel (1976); Bromberger (1992).

\(^{24}\) For some implementations of this basic idea, see Groenendijk and Stokhof (1997); Hamblin (1973); Karttunen (1977).

\(^{25}\) These answerhood conditions may be context-sensitive, so that one and the same proposition can be an answer to a question in one context but not another (cf. Boër and Lycan, 1986).

\(^{26}\) Van Fraassen (1980, chp. 5), for example, holds a very strong affirmative position on this issue.
why-question. For example, in both of (30) and (31), the property of working hard is at issue.

(30) Why is it the case that Jane works hard?
(31) Why is it the case that some students work hard?

Whether the property at issue is attributed directly to an object, as in (30), or is combined with a quantifier as in (31), won’t matter. With this terminology in place, I can state my constraint.

Separation p because q is a true answer to why is it the case that p? only if the following condition is met: that q only mentions facts that are wholly separate from the fact that the property at issue in the proposition that p is attributed in the way it is, i.e., by being instantiated in the individual mentioned in the proposition that p or by being in the scope of the quantifier in the sentence that expresses the proposition that p.

The idea behind Separation is that facts cannot be explained by citing themselves or their distinguishable components.\(^\text{27}\)

To illustrate the force of the qualification attributed in the way it is, consider why Ray the raven is black. The property at issue is being black, attributed to Ray. According to Separation, a proposition is a true answer to this question only if it does not include the information that Ray is black. A proposition may mention that Ray is the offspring of black ravens—that is, it may attribute the property at issue to objects aside from Ray—but any such proposition must not mention that Ray himself is black.

\(^\text{27}\) This is a requirement that many theories of explanation embrace explicitly, even if they diverge sharply on other issues. On Lewis’ account of explanation (Lewis, 1986), to explain why an event e occurred, one gives information about the causal history of e, which crucially excludes the information that e occurred. Similarly, on the classic DN model of explanation (Hempel, 1965), the premises of an argument can furnish an explanation of a fact denoted by its conclusion only if the conclusion is not itself among these premises.

Generics, Conservativity, and Kind-Subordination

It’s possible to violate Separation even if the answer does not simply repeat the predicate that denotes the property at issue.\(^\text{28}\) Consider why Mary wrote the name Mary on a piece of paper. The proposition that she wrote the letter M, then the letter a, etc. cannot be part of a true answer to that question because it is not wholly separate. It may be a true answer to how she wrote her name, or what writing her name consists in, but not why she did so.\(^\text{29}\)

By the same token, repeating expressions in the subject and the predicate is insufficient to show that the denotations of subject and predicate are not wholly separate, as the following contrast illustrates.

(32) Good sailors are good politicians.
(33) Dutch sailors are Dutch politicians.

While (32) is a perfectly felicitous claim that we easily understand and know how to argue about, (33) is just odd. That is due to the fact that while being a good sailor is wholly separate from being a good

\(^\text{28}\) A similar issue arose in early discussions of David Lewis’ counterfactual analysis of causation. In its simplest incarnation, the analysis holds that c is a cause of e iff c and e both occurred and had c not occurred, e would not have occurred. As Jaegwon Kim pointed out in an early review (Kim, 1993), the simple counterfactual analysis falsely certifies Mary’s writing the letter M as a cause of her writing Mary. A natural response is that the counterfactual analysis only applies to wholly separate events.

\(^\text{29}\) There is one systematic class of exceptions to Separation. There are phenomena that are constituted, in part, by having a certain causal structure. A famous example is sunburn: to have sunburn is to have a burn on one’s skin that is caused by the sun. That the burn is caused in this way is constitutive of its being sunburn. And yet it is perfectly fine to say that the sun caused Mary’s sunburn, and that Mary has a sunburn because of the sun. Yet being exposed to the sun is part of having a sunburn. This kind of constitution may even be contingent. Consider a situation in which Mary writes her name not because she simply wanted to, but because whenever she finds herself writing the letter M, she cannot but continue to write her name, regardless of whether that is caused by the sun. Imagine an occasion on which Mary doodles, writes the letter M without meaning to do so, let alone meaning to write her name, and yet continues to write her name once the M has appeared. In that case, it is true that Mary wrote Mary because she wrote the letter M, and her writing M caused her to write Mary. (Thanks to Sandy Goldberg for the example.) I flag these as potential exceptions and set them aside, since the required structure isn’t in place for conservativity generics.
politician, being a Dutch sailor is not wholly separate from being a Dutch politician.30

Thus, \textit{Separation} relies on the metaphysical notion of being wholly separate, and there is (probably) no easy syntactic or semantic algorithm for determining which facts are wholly separate from the original fact to be explained. I will remain with an intuitive understanding of being wholly separate. \textit{Separation}, then, is the first constraint on true answers to why-questions. It is formulated purely in terms of the content of the sentences that appear in the why-question and its corresponding answer. In that respect, it’s a constraint that is independent of any particular concerns about generics.

5.2 A Constraint Derived from the Interpretation of Generics

On the broadly explanatory approach to generics, the close or intimate connection they express is analyzed as an explanatory one: the property of belonging to the kind is explanatorily relevant to the fact that the property predicated in the generic is instantiated in at least some members of the kind. This aspect of the semantics is the source of the second constraint.

\textbf{Relevance} The claim that \textit{At least some} \textit{As are F} because \textit{q} is an admissible answer to the why-question \textit{why are at least some As F?} for the purpose of interpreting the generic \textit{As are F} only if the claim that \textit{q} mentions the information that those members of the kind to which the explanation applies are members of that kind.

Answers to a why-question that do not satisfy \textbf{Relevance} may still be true, but they aren’t admissible for the interpretation of the corresponding generic, since they would not encode that kind-membership is explanatorily relevant.

\textit{Separation} and \textbf{Relevance} conspire to make conservativity generics uninterpretable. Consider (20), repeated here.

(20) Ravens are ravens that are black.

According to \textbf{Separation}, whatever proposition we consider as a possible answer to the question why at least some ravens are ravens that are black may only include information about facts that are wholly separate from the fact to be explained, i.e., the fact that the ravens the explanation applies to have the property of being ravens that are black.

The fact that such a raven is a raven is not wholly separate from that fact to be explained, and hence \textit{may not} be mentioned in any true answer to the question. But by \textbf{Relevance}, the property of being a raven \textit{must} be mentioned in any admissible answer to the question. Hence, no proposition can be a true and admissible answer to the question. Since a generic has an interpretation only if the notion of normality is defined, which in turn requires that the corresponding why-question have a true and admissible answer, the generic is not interpretable.

So generally: a generic \textit{As are As that are F} has an interpretation only if the following why-question has a true and admissible answer. Why is it the case that at least some \textit{As are As} that are \textit{F}? The property at issue is being an \textit{A} that is \textit{F}. By \textbf{Relevance}, such an answer must mention being an \textit{A}. But since being an \textit{A} is not wholly separate from being an \textit{A} that is \textit{F}, \textbf{Separation} prohibits mentioning being an \textit{A}. The two constraints cannot be satisfied simultaneously and the generic is uninterpretable.

6. Extensions

So far, I’ve only applied the account to conservativity generics, a subclass of the nominal predications. But as we saw in discussing Cohen’s theory (§3), there are other nominal predications that can lead to problems. Let me now turn to whether my account can capture the data Cohen drew our attention to. Key among them are the patterns in generics with nominal predications where subject and object denote kinds on the same taxonomic hierarchy.

30 We’ll see in a moment how violations of \textit{Separation} lead to oddness in generics.
6.1 Subkinds Predicated of Superkinds

I’ll divide my discussion into two, beginning with generics where belonging to a subkind is predicated of a superkind, as in (15), (16), and (28).

(15) Bees are workers.
(16) Books are paperbacks.
(28) Hominids are humans.

Cohen’s treatment suggests that in each case, the domain of the subject kind is partitioned according to the next lower level of the hierarchy. We saw that this treatment makes the correct prediction for (15) and (16), but not for (28). My theory treats them all in the same way, and diagnoses them as suffering from the same uninterpretability: Relevance and Separation cannot be satisfied simultaneously.

Let me illustrate with (15). It is interpretable only if there is an admissible and true answer to the question why at least some bees are workers. By Separation, such an answer may only mention facts that are wholly separate from the fact that the things to which the answer applies are workers. Unfortunately, the fact that a given individual is a bee is not wholly separate from the fact that it is a worker, for to be a worker is to be a bee.\footnote{For further discussion of the idea that when to be an A just is to be a B, certain explanations are impossible, see Rayo (2013).}

But by Relevance, precisely that fact must be mentioned by an admissible answer to the question. Hence, (15) is not interpretable.

Similar accounts apply to (16) and (28). The crucial principle concerning facts is this. The fact that something belongs to a superkind of a given kind A is not wholly separate from the fact that it belongs to the kind A. Given this general principle, it follows that all generics which predicate belonging to a subkind of a superkind are uninterpretable. Where Cohen’s account made the right predictions, the present account coincides with it. It improves on Cohen’s account for generics that predicate belonging to a subkind of a superkind where there is only one subkind, as for (28).

6.2 Superkinds Predicated of Subkinds

The account of §6.1 delivers the right results for generic sentences in which the predicate is a subordinate kind of the subject. However, the account should apply equally to generics that involve nominal predications where the predicate is a superordinate kind of the subject. In these cases, belonging to the kind denoted by the subject and belonging to the kind denoted by the predicate are not wholly separate either, and hence (34)–(35) should have exactly the same status as (15), (16), and (28).

(34) Lions are mammals.
(35) Ravens are ravens.

Yet these examples are clearly true. Without further ado, the present account makes the wrong predictions for them.

I grant that the account predicts that (34) and (35) are uninterpretable so long as they are analyzed as containing the generic operator gen. However, I contend that these sentences—and indeed those like (15), (16), and (28) discussed above—have another interpretation, one that does not involve gen, but which analyzes them as direct kind-predications, analogous to the standard analysis of examples such as ravens are widespread, diamonds are rare, or dodos are extinct. (34), on this approach, has a reading with the content that the kind lion is a proper or improper subkind of the kind mammal. (35) has an interpretation with the content that the kind raven is a proper or improper subkind of the kind raven.\footnote{I use the locutions proper and improper as applied to subkinds on analogy with the same terms as applied to subsets. A proper subkind of the kind A is a subkind that is not identical to A. An improper one may be identical with A.}

This reading clearly gives the correct truth-conditions for this sentence. The key question is how this reading comes about, and whether
the mechanism by which it comes about leads to new problems.

It is a common starting point for many theories of generics that bare plurals in subject position denote kinds, and that the generic operator appears in the logical form of generics as a way of repairing a type-mismatch. A simple generic, such as (1) ravens are black, gives rise to the following problem. Ravens denotes a kind, some type of abstract object, and black denotes a property that is true of non-kind individuals. This mismatch between subject and predicate can be repaired by introducing a generic operator to mediate between the two.

For generic sentences that involve a nominal predication with a bare plural, another option is available, because the nominal in the verb phrase can either be true of non-kind individuals, or of kinds.33 (25) and (36) illustrate these two possibilities, respectively.

(25) Dutchmen are sailors.
(36) Europeans domesticated five grasses.

In (25), Sailors is a predicate true of all and only individual sailors, and this is predicated of individual Dutchmen through the mediation of the generic operator gen. However, domestication is something that is done to kinds, so that the predicate domesticate in (36) is restricted to taking a kind-denoting phrase as a direct object. The expression five grasses must therefore be true of five kinds of grasses, which implies in turn that grasses has in its extension all and only the kinds of grasses.

This same ambiguity is present in (34) and (35). Mammals can denote either all and only the individual mammals, in which case (34) would need to be interpreted in terms of the generic operator gen. Or mammals can denote all and only the (proper or improper) sub-

kinds of mammals, in which case the predication can be a direct kind-predication.

Let me emphasize that I am not advocating for the presence of this ambiguity only in cases like (34) and (35) where the generic is true. The same ambiguity is present in generics where belonging to a subkind is predicated of the superkind, as in (15), (16), and (28). So for example, in addition to the content that generically many bees are workers, (15) bees are workers also has a reading that means that the kind bee is a subkind of the kind worker. This additional reading is also false, so that the additional interpretive possibility does not lead to inappropriate predictions. Even once we take into account the additional, kind-subordinating reading, neither (15) nor (16) is predicted to be true.34

6.3 Two Objections
Let me end by discussing two objections due to Cohen (2004), who anticipates a treatment of some nominal generics in terms of direct kind-predication. The first objection points to bare plural sentences with an overt adverb of quantification, such as (37) and (38).

33. See also Carlson (1977, 53) and Zamparelli (2000) for discussion of this point. A similar proposal is made in Teichman (2015, 100ff). Teichman suggests that when the nominal is a sortal predicate, the generic is automatically kind-predicating. I opt for a more complex account, on which generics with nominal predicates can have either a characterizing or a kind-predicating analysis because I think that there are clear examples of generics with nominal predicates which are true and yet which tolerate exceptions, hence cannot be kind-predicating, such as (25), Dutchmen are sailors.

34. Let me mention a class of examples that might seem troublesome. Consider (i) and (ii).

(i) Ravens are living ravens.
(ii) Ravens are self-identical ravens.

I take it that these examples are odd, but one might think that my account predicts them to be true. The key issue is whether ravens and, e.g., self-identical ravens denote the same kinds. That both denote kinds is hard to deny, since both can appear as the subjects of felicitous generics. I suspect that the two expressions do denote the same kinds, but that these examples are awkward because the complex NPs are needlessly complex, especially in light of the fact that the simpler ravens is available, as the appearance of that NP in subject position shows. Thus, the more complex NP in object position suggests that the self-identical ravens are a subkind of the ravens. But once we treat the object NP in this way, the sentence is interpreted as false, in line with the discussion of §6.1.
(37) Mammals are usually placental mammals. (= Cohen, 2004, 540, ex. 15a)

(38) Bees are generally workers. (= Cohen, 2004, 540, ex. 15b)

Cohen points out that adverbs of quantification are impossible with direct kind-predications, as the ill-formedness of *dinosaurs are always extinct (= Cohen, 2004, 540, ex. 14) shows.\(^{35}\) That implies that (37) and (38) are not kind-predicating sentences. But that is not an objection to the present account, since I claim that bare plural sentences are ambiguous, and the presence of the overt adverb of quantification rules out the direct kind-predicating interpretation. Since that leaves the other interpretation untouched, I predict that (37) and (38) have a coherent interpretation, as required.\(^{36}\)

The next objection is the one that Cohen places the most weight on. He points to (39) and (40).

(39) Whales are mammals or fish. (= Cohen, 2004, 540, ex. 16a)

(40) Pets are cats or dogs. (= Cohen, 2004, 540, ex. 17a)

While (39) is consistent with the hypothesis that the LF of these sentences is directly kind-predicating, (40) is not. Let me spell out this objection in more detail.

Assume for the purposes of argument that the LF of a generic that predicates belonging to a superkind of a subkind is \(F(a)\). So the structure of (39) is (41a), which after functional application yields (41b).

\[
(41a) \lambda x. [\text{Fish}(x) \lor \text{Mammal}(x)](\text{whale}) \\
(41b) \text{Fish}(\text{whale}) \lor \text{Mammal}(\text{whale}).
\]

According to Cohen, this prediction is consonant with intuition. However, the most natural reading of (40) is not the analogous (42a), but instead the characterizing generic (42b).

(42) a. \(\lambda x. [\text{Cat}(x) \lor \text{Dog}(x)]\) \\
 b. \([\text{gen } x: \text{Pet}(x)](\text{Cat}(x) \lor \text{Dog}(x))\)

This argument does not threaten the account proposed here, since I do not claim that all nominal predications only have the kind-predicating logical form. Instead, all nominal predications are susceptible to both analyses. Now, it’s true that my account predicts that on the interpretation Cohen favors for (40), which is (42b), the sentence is uninterpretable. However, Cohen’s account also predicts that the sentence fails to satisfy the homogeneity constraint, so both theories agree that (42b) is defective. I think the best way to pursue this is to look at nominal predications that do not involve predicates on the same taxonomic hierarchy, such as (43).

(43) Dutchmen are cyclists or bus riders (but not drivers).

a. \(\text{Cyclist}(\text{dutchmen}) \lor \text{Bus.Rider}(\text{dutchmen})\) \\
b. \([\text{gen } x: \text{Dutchman}(x)](\text{Cyclist}(x) \lor \text{Bus.Rider}(x))\)

Cohen and I agree that the kind-predicating analysis (43a) is inappropriate here because (43a) is obviously false—Dutchmen aren’t subkinds of either the cyclists or the bus riders, since they aren’t even on the same hierarchy—and yet the original sentence (43) is true. So here it’s important that the interpretation (43b) is available, since only that interpretation is even extensionally adequate. But my account predicts that (43b) is a viable, truth-evaluable interpretation, since RELEVANCE and SEPARATION do not clash here.

\(^{35}\) Though let me note that I’m not sure exactly how strong Cohen’s claim can be. Seagulls are always widespread doesn’t strike me as nearly as bad. Indeed, it seems to have a coherent interpretation, that seagulls are a kind that isn’t just seasonally widespread (perhaps they are located in just one spot during breeding season), but always. Perhaps there is no general bar to combining adverbs of quantification with kind-restricted predicates.

\(^{36}\) Cohen anticipates this reply, remarking that it is unattractively complex. I agree that it is complex, but I hope to have shown in this paper that it is attractive for all that, especially in light of the concerns I have raised about Cohen’s own proposal, along with the observation that some nominal predications are clearly not kind-subordinating while some object NPs must be interpreted as denoting kinds. So all of the components of my complex account are independently motivated.
7. Conclusion

Looking at conservativity generics has allowed us to look at an indefinitely large, systematic set of data—precisely the sort of phenomenon that compositional theories of language are ideally suited to explain. The account I’ve provided in this paper has tried to tie the account of the badness of conservativity generics fairly closely to a particular compositional semantic theory of generics that generates the two constraints that account for the data. In this context, the contrast with Ariel Cohen’s work is particularly useful. Cohen’s account crucially draws on resources that are relatively distant from the semantics of generics—the way in which kinds are represented—and I’ve suggested that the systematic patterns that surely must exist in that arena, as well, do not line up properly with the facts about the interpretation of generics.

In this respect, I hope that the discussion in this paper illuminates a broader question: how much, if anything, can we account for when it comes to broadly the meaning of generics by looking at the formal semantics of generics, and how much can we account for only by drawing on non-semantic resources, such as particular forms of mental representation? The argument of this paper is that compositional semantics themselves are a valuable resource in our theorizing.37

References

Bromberger, S. “Why-Questions”. In On What We Know We Don’t Know, 75–100 (Chicago: The University of Chicago Press, 1992).

Glanzberg, M. “Quantification and Contributing Objects to Thoughts”. Philosophical Perspectives, 22(1), (2008), 207–231.

37. Many thanks to the PhLing group at Northwestern, the Munich Center for Mathematical Philosophy, the Linguistics Department at the Goethe Universität Frankfurt, SemBabble at UC San Diego, and the Work in Progress Group at UC Berkeley, where ancestors of this paper were presented. I also thank Ivano Caponigro, Michael Glanzberg, Sandy Goldberg, Rachel Sterken, and David Liebesman for discussion.

