FZER0–: FUNDAMENTAL ESTIMATION FOR MAX 6

Michael Zbyszynski David Zicarelli
Cycling ’74 Cycling ’74
San Francisco, CA, USA San Francisco, CA, USA
mzed@cycling74.com zicarerelli@cycling74.com
Regina Colleca
Center for Computer Research in Music and Acoustics, Stanford University
Stanford, CA, USA
collecc@ccrma.stanford.edu

ABSTRACT

fzero– is a monophonic, waveform-based, real-time fundamental estimation object released as part of the standard Max 6 distribution. It was designed to provide usable results in a large variety of cases with a minimum of parameter modification by the user. It implements a Fast Lifting Wavelet Transform (FLWT) using the Haar Wavelet. The object provides an efficient estimation of the fundamental frequency in a large variety of real-world situations.

1. INTRODUCTION

The fundamental frequency (f0) of a musical sound is one of its defining parameters and is key to the perception of pitch and melody. The usefulness of quickly and reliably estimating f0 has been demonstrated by numerous musical works and research papers, but fundamental estimation is still a difficult and interesting problem and real-time implementation is non-trivial for musicians. Max® is a popular visual, data-flow programming language for music and media. Max programs are commonly referred to as patches, and they are programmed by connecting basic functions, called objects, on a visual canvas. The use of the term object in the context of Max, and in this paper, should not be confused with object-oriented programming. Max objects are self-contained functions that communicate to the rest of the environment via data inlets and outlets. Max comes with a library of standard objects and can be extended by third party objects, written in C.

The MSP library of objects was introduced to Max about 15 years ago, adding audio capabilities to the programming environment. Since then, many excellent f0 and pitch tracking objects have been developed (see §1.2).

However, identifying the best object and configuration to use in a specific musical context is still challenging for many users. Musicians often use the fiddle– object, a pitch follower that can decompose a signal into sinusoids, which works well in many cases. However, when fiddle– does not generate accurate results it can be difficult to understand why and adjust accordingly. Although there are multiple adjustable parameters in the object, finding an optimal trade-off between efficiency and accuracy can be elusive, and it is very hard to develop an intuition for the parameters and behaviour of FFT-based pitch analysis. Consequently, we felt there was an open niche in the Max environment for a simple, general-purpose analysis. Consequently, we felt there was an open niche

1.1. Design principles for the object

Discussions when designing this object were primarily concerned with the user experience rather than specific mathematics. Although we chose a pitch tracking algorithm that was not represented in previous Max pitch detectors, scientific novelty was not the goal.

The motivation was to create an object whose default behavior was acceptable in a large range of scenarios, and that didn’t require extensive manipulation to yield usable results. Specifically, we wanted an object that provided:

• default f0 estimation results that are musically useful for a variety of source sounds, even noisy ones;
• intuitive control for musicians with presets for common musical instrument source signals, and the ability to balance accuracy with latency in a straightforward way;
• basic on-set detection;
• efficient, real-time performance. 3

It wasn’t clear if one pitch tracking algorithm could fulfill all of these goals in a wide variety of cases, or if we would need to develop a hybrid approach with different algorithms for different instruments or conditions. Typical pitch tracking patches will often include filters to remove noise outside of the desired frequency range, and other processing to compensate for dynamic variation. We considered building these features into the object, perhaps applying them dynamically. Our first step was to survey the existing field of fundamental estimation algorithms for Max and identify their strengths and shortcomings.

1.2. Existing pitch detectors

Miller Puckette has written a series of pitch trackers using FFT feature detection that have been ported to Max. The oldest of these is pt–, written for Max/FTS on the IRCAM Signal Processing Workstation [7], as were the later objects pitch– and jack–. These objects have been superseded by fiddle– [7], and more recently sigmund–. 4 These objects have been widely adopted by Max users, and are effective in a wide range of circumstances. They also output information about partials other than f0. As the name “fiddle–” suggests, this object is excellent for tracking violin signals. But frequency resolution and general performance suffer below about 200 Hz, the frequency of the lowest string on a violin. This is problem common to FFT-based approaches: poor low frequency resolution, a natural consequence of insufficient samples in a given window. At a sampling rate of 44.1kHz, a 2048-sample FFT window has a frequency resolution of approximately 11 Hz. While this is less than a semitone at 200 Hz, it is more than a whole step at 82 Hz—approximately the bottom string of a guitar in standard tuning. Also, Dobrian [7] notes that fiddle– has difficulty in cases where the music is not “conceptually organized as discrete notes each having a single stable fundamental pitch.”

Tristan Jehan has written a family of analysis objects that are based on fiddle– and suffer from the same characteristics listed above. The analyzer– object includes pitch tracking and other perceptual information such as loudness, brightness, and noisiness. Jehan’s pitch– object outputs a subset of that data, including the pitch and amplitude of f0 and higher partials [7]. The yin– f0 estimator uses autocorrelation and cancellation to estimate the frequency [7]. This approach has been shown by Obin [7] to be very robust for plucked or struck strings. An implementation is available through IRCAM’s online forum. 5

Two other objects deserve mention, although they fall outside of the category of monophonic pitch detectors. Aria Com’s transcribe– object [7] tackles polyphonic pitch detection by using non-negative decomposition techniques. lana– by Todor Todoroff, uses a frequency-domain approach derived from Terhardt and reports a large amount of spectral data about the incoming signal. It has been used effectively for real-time analysis and resynthesis [7]. Both of these are also available through the IRCAM forum.

Each of these objects has strengths and performs best under the circumstances for which it was designed. An expert user should have access to tools that solve a wide range of musical problems. But to the more common user of Max, the choices can be overwhelming and implementing the best choice requires some finesse. Furthermore, inclusion of objects outside of the standard Max distribution in either a musical composition or a teaching environment make that piece or lesson more difficult to share and preserve, which is a serious consideration for computer musicians. This problem is heightened if the included objects are not cross-platform, or not freely available.

In summary, the most commonly used objects (fiddle–, yin–) implement either FFT-based feature detection or autocorrelation. In addition to these known approaches, two other methods that had not yet been explored in Max held promise for us: wavelet transforms and multiple FFT methods (e.g. cepstrum, modulation spectrum, or “Fourier of Fourier transforms”). When this project began in 2009, Marchand’s “FFT of FFT” approach [2] was explored. Although this still looks promising, it was determined to be too computationally expensive for our applications. Wavelet transforms, although relatively untested in Max, offered the potential to meet all of our design principles while also introducing a new tool to the array of Max analysis objects.

2. OBJECT DESIGN

The design of the fzero– max object can be described from two perspectives: the implementation of the underlying algorithm and the presentation of the algorithm’s functions to the user. Although this paper goes into details of the algorithm, it is important to our design that deep knowledge of the underlying algorithm is unnecessary for the end user.

2.1. Algorithm

The underlying mathematics for fzero– can be found in Larson and Maddox [7] and is echoed below in §2.1.1 and §2.1.2. This algorithm stood out because

• the wavelet transform has shown promising results elsewhere [7];
• it has good low-frequency resolution (limited by the need to fit at least two periods of f0 into a buffer);
• it shows resistance to noise (Larson reports good results up to a SNR of 20-25 dB);
• it can be effective on signals with relatively weak fundamentals;

3Efficiency was not specifically defined at this point, but was understood as using a relatively small (less than 10%) amount of the CPU on a typical laptop.
http://cycling74.com/products/mx/
http://cycling74.com/products/tpml/software.html
http://imtr.ircam.fr/imtr/Max/MSP_external
ABSTRACT

fzero– is a monophonic, wavelet-based, real-time fundamental estimation object released as part of the standard Max 6 distribution. It was designed to provide usable results in a large variety of cases with a minimum of parameter modification by the user. It implements a Fast Lifting Wavelet Transform (FLWT) using the Haar Wavelet. The object provides an efficient estimation of the fundamental frequency in a large variety of real-world situations.

1. INTRODUCTION

The fundamental frequency (f0) of a musical sound is one of its defining parameters and is key to the perception of pitch and melody. The use of the term pitch by connecting basic functions, called pitch tracking objects have been developed (see 2http://cycling74.com/products/max/)

However, identifying the best object and configuration to use in a specific musical context is still challenging for many users. Musicians often use the fiddle– object, a pitch follower that can decompose a signal into sinusoids, which works well in many cases. However, when fiddle– does not generate accurate results it can be difficult to understand why and adjust accordingly. Although there are multiple adjustable parameters in the object, finding an optimal trade-off between efficiency and accuracy can be elusive, and it is very hard to develop an intuition for the parameters and behaviour of FFT-based pitch analysis. Consequently, we felt there was an open niche in the Max environment for a simple, general-purpose estimation tool to supplement the existing objects and act as a starting point for musicians. The object described in this paper, fzero–, has been included as part of the standard distribution since Max version 6.

1.1. Design principles for the object

Discussions when designing this object were primarily concerned with the user experience rather than specific mathematics. Although we chose a pitch tracking algorithm that was not represented in previous Max pitch detectors, scientific novelty was not the goal. The motivation was to create an object whose default behavior was acceptable in a large range of scenarios, and that didn’t require extensive manipulation to yield usable results. Specifically, we wanted an object that provided:

• default f0 estimation results that are musically useful for a variety of source sounds, even noisy ones;
• intuitive control for musicians with presets for common musical instrument sources, and the ability to balance accuracy with latency in a straightforward way;
• basic onset detection;
• efficient, real-time performance. 3

2. OBJECT DESIGN

The design of fzero– max can be described from two perspectives: the implementation of the underlying mathematics for computer musicians. This problem is heightened under the circumstances for which it was designed. An expert user should desire access to tools that solve a wide range of musical problems. But to the more common user of Max, the choices can be overwhelming and implementing the best choice requires some finesse. Furthermore, inclusion of objects outside of the standard Max distribution in either a musical composition or a teaching environment make that piece or lesson more difficult to share and perceive, which is a serious consideration for computer musicians. This problem is heightened if the included objects are not cross-platform, or not freely available.

In summary, the most commonly used objects(fiddle–, yin–) implement either FFT-based feature detection or autocorrelation. In addition to these known approaches, two other methods that had not yet been explored in Max held promise for us: wavelet transforms and multiple FFT methods (e.g. cepstrum, modulation spectrum, or “Fourier of Fourier transforms”). When this project began in 2009, Marchand’s “FFT of FFT” approach [7] was explored. Although this still looks promising, it was determined to be too computationally expensive for our applications. Wavelet transforms, although relatively untested in Max, offered the potential to meet all of our design principles while also introducing a new tool to the array of Max analysis objects.

2.1.1 and

3. Efficiency was not specifically defined at this point, but was understood as using a relatively small (less than 10%) amount of the CPU on a typical laptop.

4. These objects have been widely

5. Joan Fenn’s pitch detectors currently outperform fzero–, which fiddle– claims to be very robust for plucked or struck strings. An implementation is available through IRCAM’s online forum.

6. Two other objects deserve mention, although they fall outside of the category of monophonic pitch detectors. Arva Comt’s transcribe– object [7] tackles polyphonic pitch detection by using non-negative decompo
there was potential for computational efficiency and hence real-time implementation.

The following subsections list the components of the algorithm, step by step. The analysis is performed on a buffer of samples with a default size of 2048. The sample rate in Max is configurable by the user separately from this object. Each step is repeated at each iteration of the transform. The object is set to run up to five levels of analysis, although it will stop analyzing if no peaks are detected in the signal.

2.1.1. FLWT

The first step in the f_0 estimation algorithm is a Fast Lifting Wavelet Transform, using a Haar wavelet. In the jargon of wavelets, this transform splits the signal into approximation and detail components written $a(n)$ and $d(n)$. Respectively, these components are equivalent to a downsampling low-pass (approximation) and upsampling high-pass (detail) filter. The transform can be re-applied to the approximation, further isolating f_0. The equations used are from Daubechies and Sweldens [2]:

1. $d_0(n) = x(2n + 1)$
2. $a_0(n) = x(2n)$
3. $d_1(n) = d_0(n) - a_0(n)$
4. $a_1(n) = a_0(n) + \frac{d_1(n)}{2}$

where $x(n)$ is the original signal, $a_1(n)$ the first approximation, and $d_1(n)$ the first detail. Since we are not concerned with the high-pass characteristics, the detail component $d_1(n)$ is ignored. The approximation component is equivalent to a first-order, downsampling low-pass filter, derived from the equations above:

$$a_1(n) = \frac{x(2n + 1) + x(2n)}{2}$$

However, high pitched fundamentals are either discarded or the period becomes an unusably small number of samples after downsampling. In practice, this imposes an effective upper frequency limit of detectable pitches at about 5% of the sample rate. We had success tracking pitches up to 2500 Hz at a 44.1kHz sample rate, which is approximately the highest note for a Western, concert flute. Although higher pitches are occasionally used in musical performance, the trade-off is increased resolution in the lower frequency ranges (compared to FFT-based analyses) where fundamentals are more likely to occur.

2.1.2. Finding local maxima and peak-to-peak distances

After each level of transformation, the algorithm detects local minimum and maximum peaks in the signal. First a DC blocking filter is applied, then direction changes over a specified amplitude threshold are recorded. The thresholds are set at 75% of the maximum and minimum amplitude of the buffer, and are used to reject low-amplitude noise and partials from the peak detection process. This parameter is not exposed to the user. Direction changes are not considered to be peaks unless they occur more than a specified number of samples δ from the previous peak, which is determined by the maximum frequency attribute F and the wavelet level i:

$$\delta = \text{max} \left(\frac{F}{2^i}, 1 \right)$$

Once peaks have been found, the number of samples between a given peak and each of three subsequent peaks is determined. Each distance between peaks is a candidate for the period of f_0, every occurrence of a particular distance is stored for evaluation in the next step. Inclusion of distances between peaks that have one or two intervening peaks helps to correctly identify f_0 in cases where a higher peak is partial is creating peaks between those which represent f_0. Higher partials and their peaks are filtered out in later analysis levels. If no peaks are detected, the analysis stops. This saves CPU cycles in cases where f_0 has been filtered out of the approximation.

A potential problem for many analysis methods is when a note begins or changes in the middle of the buffer. By “buffer,” we mean window or frame as the term is used in a windowing function such as the Short Time Fourier Transform. This has been somewhat mitigated in $fzero$—by analyzing peaks starting from the most recent sample and moving toward the oldest, stopping when an adequate number of peaks have been detected. Many cases that were initially difficult, such as samples that come from an attack transient, reverberation, or a note that has ended, are now effectively suppressed.

2.1.3. Estimating the fundamental for the current level

Once the peak-to-peak distances have been calculated, they are analyzed to determine the number of samples that best corresponds to f_0 at current level of analysis. Each distance is given a score based on the number of similar distances that are identified; distances are considered similar if they are equal or within δ samples of one another. If present, the f_0 estimate from the previous full analysis is used to distinguish between close cases, biasing the selection toward the previous value. In the case of a tie involving one distance that is twice as long as a another, the longer distance is chosen. This favors lower octaves in the final result.

At higher frequencies, the period of the fundamental is a relatively small number of samples (2500 Hz is 17.64 samples at a 44.1kHz sample rate). To increase resolution, the mean of the distances within δ of highest scoring distance is used as final estimate for a particular analysis level. This has negligible effect at lower frequencies.

2.1.4. Checking against previous level

The results from the first pass of the transform are reanalyzed following the same procedure, up to a maximum of five levels. After the first level, the algorithm checks at this point to see if the fundamental estimate for the current level (after adjusting for downsampling) is the same as that of the previous level. If so, that is taken to be the period of the signal and it is converted into a frequency and reported. Otherwise, the algorithm moves to the next level and starts the process again. If the level limit is exceeded, it is assumed that the signal is unpitched and no result is reported. Also, the analysis stops if no peaks are found, which is often the case for high frequency inputs.

We initially considered that the maximum number of levels would be a user-configurable feature. However, we discovered that the algorithm did a good job of determining how many levels to run based on the input signal. Exposing this parameter would have added complexity for the user with little or no benefit. 6

2.1.5. Onset detection

The first version of $fzero$ did not include onset detection, but early testers convinced us that this is a necessary function. The object looks for changes in amplitude or estimated pitch, and reports an onset when either criterion is met. The object then waits for configurable number of samples (default=1024) before it reports a new onset, suppressing onsets triggered by vibrato or tremolo. This method is effective and relatively unsophisticated.

The exact moment when a note starts is problematic for pitch detection because many instruments have frequency-rich attack transients that obscure an emergent fundamental frequency. This particular algorithm, like many others, requires a few periods of f_0 to be buffered before it can be properly identified, so while knowing the exact onset time is very useful musically, this feature has the side effect of occurring at moments where the analysis does not perform optimally.

2.2. Max Object

As previously stated, the goal of $fzero$ is to present users with a simple interface that works “out of the box.” In most cases, it should work well with the default settings. The following parameters have been exposed for advanced users and/or exceptional cases.

2.2.1. Outputs

The $fzero$ object has three outputs. From left to right, these are:

5. a floating-point value in Hertz when a fundamental within the specified parameters has been detected. 7
6. peak, linear amplitude of the last analysis buffer (range 0.0-1.0)
7. a bang when a new onset has been detected or a list of the pitch and amplitude that triggered the onset report.

2.2.2. Object attributes

$fzero$ analyzes a circular buffer of samples, the size of which is set by the size attribute (in samples, the default = 2048). The buffer size affects latency and efficiency, as well as the minimum possible f_0. Larger buffers generally provide a more accurate analysis, especially for low fundamental frequencies, with a penalty in efficiency and latency. These penalties are minimized by the self-scaling aspects of the algorithm.

The period attribute (in samples, the default = 256) determines how often the analysis is run. It is usually fewer samples than the buffer size, allowing the object to

6Based on our testing, 16 maxima and 16 minima were more than enough to return the correct result.

7The denotation of “period” here is equivalent to “hop size” in a windowing function.
there was potential for computational efficiency and hence real-time implementation. The following subsections list the components of the algorithm, step by step. The analysis is performed on a buffer of samples with a default size of 2048. The sample rate in Max is configurable by the user separately from this object. Each step is repeated at each iteration of the transform. The object is set to run up to five levels of analysis, although it will stop analyzing if no peaks are detected in the signal.

2.1. FIWT

The first step in the f_0 estimation algorithm is a Fast Lifting Wavelet Transform, using a Haar wavelet. In the jargon of wavelets, this transform splits the signal into approximation and detail components. Associated with each detail, the maximum frequency component is equivalent to $F/4$, half the Nyquist frequency due to downsampling.

However, high pitched fundamentals are either discarded or the period becomes an unusually small number of samples after downsampling. In practice, this imposes an effective upper frequency limit of detectable pitches at about 5% of the sample rate. We had success tracking pitches up to 2500 Hz at a 44.1 kHz sample rate, which is approximately the highest note for a Western, concert flute. Although higher pitches are occasionally used in musical performance, the trade-off is increased resolution in the lower frequency ranges (compared to FFT-based analyses) where fundamentals are more likely to occur.

2.1.2. Finding local maxima and peak-to-peak distances

After each level of transformation, the algorithm detects local minimum and maximum peaks in the signal. First, a DC blocking filter is applied, then direction changes over a specified amplitude threshold are recorded. The thresholds are set at 75% of the maximum and minimum amplitude of the buffer, and are used to reject low-amplitude noise and partials from the peak detection process. This parameter is not exposed to the user. Direction changes are not considered to be peaks unless they occur more than a specified number of samples before it can be properly identified, so while knowing the exact onset time is very useful musically, this feature has the side effect of occurring at moments where the analysis does not perform optimally.

2.1.3. Estimating the fundamental for the current level

Once the peak-to-peak distances have been calculated, they are analyzed to determine the number of samples between peaks that best corresponds to f_0 at current level of analysis. Each distance is given a score based on the number of similar distances that are identified; distances are considered similar if they are equal or within δ samples of one another. If present, the f_0 estimate from the previous full analysis is used to distinguish between close cases, biasing the selection toward the previous value. In the case of a tie involving one distance that is twice as long as a another, the longer distance is chosen. This favors lower octaves in the final result.

At higher frequencies, the period of the fundamental is a relatively small number of samples (2500 Hz is 17.64 samples at a 44.1 kHz sample rate). To increase resolution, the mean of the distances within δ of highest scoring distance is used as a final estimate for a particular analysis level. This has negligible effect at lower frequencies.

2.1.4. Checking against previous level

The results from the first pass of the transform are re-analyzed following the same procedure, up to a maximum of five levels. After the first level, the algorithm checks at this point to see if the fundamental estimate for the current level (after adjusting for downsampling) is the same as that of the previous level. If so, that is taken that the period of the signal and it is converted into a frequency and reported. Otherwise, the algorithm moves to the next level and starts the process again. If the level limit is exceeded, it is assumed that the signal is unpitched and no result is reported. Also, the analysis stops if no peaks are found, which is often the case for high frequency inputs.

We initially considered that the maximum number of levels would be a user-configurable feature. However, we discovered that the algorithm did a good job of determining how many levels to run based on the input signal. Exposing this parameter would have added complexity for pitch detection because many instruments have frequency-rich attack transients that obscure an emergent fundamental frequency. This particular algorithm, like many others, requires a few periods of f_0 to be buffered before it can be properly identified, so while knowing the exact onset time is very useful musically, this feature has the side effect of occurring at moments where the analysis does not perform optimally.

2.2. Max Object

As previously stated, the goal of $fzero$ is to present users with a simple interface that works “out of the box.” In most cases, it should work well with the default settings. The following parameters have been exposed for advanced users and/or exceptional cases.

2.2.1. Outputs

The $fzero$ object has three outputs. From left to right, these are:

- a float: peak point value in Hertz when a fundamental within the specified parameters has been detected,7
- peak: linear amplitude of the last analysis buffer (range 0.0-1.0),
- a bang8 when a new onset has been detected or a list of the pitch and amplitude that triggered the onset report.

2.2.2. Object attributes

The $fzero$ analyzes a circular buffer of samples, the size of which is set by the $size$ attribute (in samples, the default = 2048). The buffer size affects latency and efficiency, as well as the minimum possible f_0. Larger buffers generally provide a more accurate analysis, especially for low fundamental frequencies, with a penalty in efficiency and latency. These penalties are minimized by the self-scaling aspects of the algorithm.

The $period$ attribute9 (in samples, the default = 256) determines how often the analysis is run. It is usually fewer samples than the buffer size, allowing the object to

7We considered that this output should be in MIDI note values, but this conversion is trivial with Max’s $fzero$ object.

8A “bang” is a special Max message that generally initiates an event.

9The denotation of “period” here is equivalent to “hop size” in a windowing function.
reduce the time between analysis results while retaining the accuracy of a large buffer. The FLWT is not re-run on the entire buffer; it is only performed on samples that have arrived since the previous analysis. However, the peak detection and subsequent steps must be run on the whole buffer for every period. A shorter analysis period has lower latency, but is less efficient. Also, analyzing more frequently decreases the length of time a previous estimate will influence the current results. The results are more prone to jitter with smaller periods, as in the piano’s case.

Increasing the period to at least 512 samples yields a smoother result, which might be desirable in some acoustic situations. Empirical data comparing many of the current fundamental detection algorithms was beyond the scope of this project to run empirical tests of all the current fundamental detection algorithms against a broad array of instrument, microphone, and acoustic situations. Empirical data comparing many of the objects cataloged in this paper would be of great use to the community and future developers.

We added a collection of common western instrument placements and choices for better results.

4. ACKNOWLEDGEMENTS

This work was supported by Cycling ’74. Joshua Kit Clayton, Timothy Place, Emmanuel Jourdan, and Rob Sussman contributed to the final code. Emmanuel Jourdan and Ben Bracken contributed important testing input. Adrian Freed at CNMAT started me off in the right direction on pitch detection algorithms. John MacCallum and Richard Dudas contributed important ideas along the way.

5. REFERENCES

Figure 3. Screenshot of the help file for zero, showing outputs in the left pane and available attributes in the right.
reduce the time between analysis results while retaining the accuracy of a large buffer. The FLWT is not re-run on the entire buffer; it is only performed on samples that have arrived since the previous analysis. However, the peak detection and subsequent steps must be run on the whole buffer for every period. A shorter analysis period has lower latency, but is less efficient. Also, analyzing more frequently decreases the length of time a previous estimate will influence the current results. The results are more prone to jitter with smaller periods, as in the piano's setpitch (default 20 Hz) parameters limit the cases where fzero~ will output a result. If the peak amplitude of the buffer does not exceed the specified threshold, the object will not do an analysis. This filters out meaningless estimates from a noisy signal. Freqmax sets the minimum distance between peaks (see equation (3)), limiting the maximum analyzed frequency and making the calculation more efficient. Freqmin filters out low frequency results, but has no effect on the calculations.

Onsetamp (linear amplitude, default = 0.1), onseptmisc (default = 2.5 semitones), and onseptperiod (default = 1024 samples) affect the onset detector. The first two parameters set the amplitude threshold and the amount of pitch deviation (respectively) that would trigger an onset report. Onset threshold is set in floating point MIDI values, allowing for a consistent perceptual distance over the whole frequency range. Optionally, the onsetlist attribute causes the object to report the pitch and amplitude that triggered the onset report.

2.2.3. Extra information in the help file

The quality of any fundamental estimation algorithm is highly dependent on the quality of the input signal, so helping users is as important as a sophisticated algorithm. The fzero~ object is effective at suppressing noise and adapting to varying input amplitudes, but it still performs best with pitched, monophonic input. The final section of the help file provides practical tips on microphone placement and choices for better results. We added a collection of common western instrument ranges into the help file to make it easier for users to set the correct range of analyzed frequencies. Originally, we thought that the object might accept instrument names as messages and use them internally to set multiple parameters. However, as the object developed, fewer parameters needed adjusting. Setting the desired frequency range was deemed adequate and adding this information to the help file exposes it to be reused across the entire application.

3. CONCLUSIONS & FUTURE WORK

It was beyond the scope of this project to run empirical tests of all the current fundamental detection algorithms against a broad array of instrument, microphone, and acoustic situations. Empirical data comparing many of the objects cataloged in this paper would be of great use to the community and future developers. In an informal survey of users, most reported CPU usage of 1-2% of the audio thread in their normal performance configuration. The worst machine was a 32-bit, MacBook Pro, 2GB Core Duo, where fzero~ consumes 7.9% of CPU cycles with normal settings.

Currently, fzero~ assumes that a fundamental detected in the previous frame is accurate and useful for determining the current estimate. The effect is usually beneficial, but can also serve to reinforce bad estimates. Development in this area might be fruitful. Furthermore, the onset detection algorithm implemented fzero~ is quite basic. Improvements could be made with a more sophisticated approach. Additional features such as offset (end of note) detection and discrimination between pitched and unpitched or voiced and unvoiced signals are under consideration.

4. ACKNOWLEDGEMENTS

This work was supported by Cycling '74. Joshua Kit Clayton, Timothy Place, Emmanuel Jourdan, and Rob Sussman contributed to the final code. Emmanuel Jourdan and Ben Bracken contributed important testing input. Adrian Freed at CNMAT started me off in the right direction on pitch detection algorithms. John MacCallum and Richard Dudas contributed important ideas along the way.

5. REFERENCES