viewpoint was the highest. However, we determined that the shifting of the image when the participant quickly turned his or her head sometimes lagged behind that of the sound. If we reduced the file size of the image and/or, the sound, this lag would be improved, but we think that the image and sound quality should not be degraded in the audiovisual interface. Therefore, we will improve the program of this system so that the shifting of the image and sound is more natural.

6.3. Questionnaire

A questionnaire containing four questions was completed by the participants after the testing.

Q1: Is the relation between the shifting of the image and that of the sound natural?

Q2: Is the instrumental sound emphasized so that it sounds natural?

Q3: When you quickly turn your head, is the relation between the shifting of the image and that of the sound the same?

Q4: What is your feeling about the characteristic or difference among each of the five functions?

Questions 1 to 3 were rated on a 5-point scale with the score of each question being averaged across the ten participants for each question. The scores for the “Negative gradient” and “Inverse square of distance” functions, for question No. 1, were the “Inverse square of distance function,” most participants had positive opinions, e.g., “I could hear the difference among the sounds very clearly,” and “I could notice many different instrumental sounds.” We determined the effectiveness of using the inverse square of distance function.

8. REFERENCES

part of a collection of interfaces to complement and control the Bacchus sound sculpture, discussed in more detail below.

2.1. Table top surfaces

Diffusion performance interface tactile.space discussed in more detail in [8], was designed to run on BrickTable, a multi-touch tabletop surface designed by music technologists Owen Valasis and Jordan Hoehenbaum [7]. The BrickTable uses the reactIVision framework [10] as originally developed for the reactTable [11]. Large scale multi-touch surfaces have much potential as a gestural performance interface: it is for this reason that the system was explored as a possibility for a diffusion performance interface.

![Figure 1. The BrickTable](image)

The original musical applications for touch tables, including those on the reACTable and AudioPad [13], relied on the placing of physical objects, called fiducials, on the table’s surface. These objects were then tracked by computer vision software and their positions and movements mapped to musical parameters. In 2009, the reactIVision tracking software was given the added capability of finger tracking [11], no longer limiting the potential tracking data to that of the amount of fiducials available. A major advantage of finger tracking over fiducial tracking is that it allows user interaction with virtual application specific objects that can be built into the graphical user interface (GUI), with far-reaching implications for gesture recognition as in other multi-touch devices. Such techniques exhibit great potential for the development of multi-touch diffusion performance interfaces.

2.2. Arduino Encoder-Based Interfaces

In designing Chronus, a new interface for the specific purpose of gestural and intuitive diffusion performance, the decision was made to pursue a rotary encoder-based design. The rotary encoder is similar to a standard rotary potentiometer (knob) in its appearance but differs in one very specific way that makes it far more suited for diffusion: it can rotate continuously in a circular motion past the 360 degree point. If a standard rotary potentiometer was mapped directly from its point to a position in space, the potential sonic trajectories directly controlled by the potentiometer would be limited to with clockwise or counterclockwise movement up to 360 degrees; therefore, continuous circular motions would not be possible. Rotary encoders remove this limitation, allowing for continuous circular spatial control: sound sources can be spun continuously around a space.

![Figure 2. Rotary Encoder Performance Interface](image)

The position of the encoder is read by an Arduino Mega microcontroller. The ATMEGA 2560-equipped Arduino Mega was chosen for its multiple external interrupters, allowing many rotary encoders to easily be simultaneously decoded. Additionally the Arduino platform was chosen due to the availability of musical interface-specific firmware libraries [4]. The custom Arduino firmware sends serial data to Processing, which in turn can send either OSC [15] or MIDI messages to any audio application. The mapping of this data is discussed in section 4.2.

3. SPATIALISATION ALGORITHMS

The traditional setup for a diffusion performance involved the mapping of each fader on a mixing desk directly to the gain of a particular speaker. As speaker orchestras grew in size, the number of speakers quickly outweighed the number of faders; therefore, speakers were divided into pairs or groups with one fader controlling the gain for the entire group. The possible spatial trajectories are limited by the physical restrictions of the performer and the specific groupings of the speakers. The subsequent sections outline the spatialisation algorithms that have been implemented into these new diffusion interfaces with an emphasis on their potential to give a performer an increased expressivity in their diffusion.

3.1. Stereo Pairing

Stereo pairing is the most traditional spatialisation technique implemented. This mode divides the speaker configuration into vertical pairs (as shown in Figure 3) and allows the performer to control the pair of speakers to be used and the stereo spread between said pair.

![Figure 3. Division of Stereo Pairs](image)

While this technique limits the possible sonic trajectories that may be performed live, it does maintain a great deal of flexibility in speaker configurations, as it has no real reliance on equidistant speakers. The system is designed to fade in and out of each speaker pair as a sound moves through the space. Though the default setting for fade time is 500ms, the performer may configure this to their needs.

3.2. Vector Base Amplitude Panning

Vector Base Amplitude Pairing (VBAP) is a spatialisation technique that was introduced by Ville Pulkki in the 1990s [14]. VBAP extends what had already been achieved in frontal stereo phantom source positioning into a 2-dimensional ring of speakers, thus allowing the creation of a phantom image at any point in a pannohmonic array. Unlike in the Stereo Pairing spatialisation technique, each speaker in the array is part of two pairs of speakers, one with each of its adjacent speakers. Pulkki called this pair-wise panning. Once the appropriate pair of speakers for creating a phantom source in the desired location has been deciphered, any pan pot algorithm may be used to control the gain factors for the speakers creating the image.

This technique allows for an accurate creation of phantom images in a pannohmonic array, but does not allow for any sense of spatial depth; as such, all sounds are perceived at the edge of the speaker array.

3.3. Source Spreading

The Vector Base Amplitude Panning technique of spatialisation allows the creation of discrete phantom source positions with in the spatial field, but doesn’t allow for size or spread of that position, nor does the Stereo Pairing technique. In an attempt to increase expressivity in diffusion performance, the ability to control spatial spread of a source was developed. In the tactile.space multi-touch user interface this is done by placing a second finger inside an audio object and separating the two fingers in an arch shape around the representation of the sweet spot.

By spreading a source position, the performer may create partial of full immersion within the sound field. The position of each of the edges of the source is deciphered by the same techniques discussed in section 3.2; subsequently, any speakers that fall between the two extremes of the arc are set to a gain factor of 0.8, creating a wall of sound of the desired size. If the arc shape reaches a width of 345 degrees, it is assumed that the desired effect is a full immersion in the sound field and the gain factors for all speakers are updated accordingly.

In the example above, shown in Figure 4, the user may update the size or spread of an object by repositioning the arc’s edge by moving the white circle at either end of the arc. The middle circle allows the user to move the spatial position of the arc whilst maintaining its established spread. The addition of source spreading capabilities and dynamic updating of the source width to source positioning techniques gives the diffusion performance artist an increased level of creative options in their performance and a greater variety of potential sonic trajectories.

3.4. Distance Encoding

A common problem among the majority of spatialisation techniques including those discussed in this paper is their ineptitude in creating a perception of spatial depth in a pantophonic speaker array. In an attempt to provide the performer with more expressivity in the diffusion, we have implemented a distance-encoding algorithm into these systems. The distance encoding system is based on an implementation of the 1/r law of atmospheric absorption. As sound waves travel through the air, they encounter friction caused by contact with air particles. Therefore, the amplitude of a sound decreases with any distance traveled [1]. Further, the spectral content is lost at varying rates depending on the amount of distance traveled; the higher frequencies drop off first, with a subsequent decrease in the cutoff frequency accelerating with further distance traveled. In order to simulate this phenomenon, spectral filtering is applied to the waveform of the incoming sound source based on the perceptual distance desired. The final signal process applied to simulate a change in distance perception of the space is a small amount of reverberation, mimicking the natural reverberation that occurs with a sound that has traveled a further distance. Listeners hear the reflection of the space relatively...
part of a collection of interfaces to complement and control the Bacchus sound sculpture, discussed in more detail below.

2.1. Table top surfaces
Diffusion performance interface tactile.space, discussed in more detail in [8], was designed to run on BrickTable, a multi-touch tabletop surface designed by music technologists Owen Vallis and Jordan Hochenenbaum [7]. The BrickTable uses the reactTVision framework [10] as originally developed for the reactTable [11]. Large scale multi-touch surfaces have much potential as a gestural performance interface: it is for this reason that the system was explored as a possibility for a diffusion performance interface.

The original musical applications for touch tables, including those on the reACTable and AudioPad [13], relied on the placing of physical objects, called fiducials, on the table’s surface. These objects were then tracked by computer vision software and their positions and movements mapped to musical parameters. In 2009, the reactTVision tracking software was given the added capability of finger tracking [11], no longer limiting the potential tracking data to that of the amount of fiducials available. A major advantage of finger tracking over fiducial tracking is that it allows user interaction with virtual application specific objects that can be built into the graphical user interface (GUI), with far-reaching implications for gesture recognition as in other multi-touch devices. Such techniques exhibit great potential for the development of multi-touch diffusion performance interfaces.

2.2. Arduino Encoder-Based Interfaces
In designing Chronus, a new interface for the specific purpose of gestural and intuitive diffusion performance, the decision was made to pursue a rotary encoder-based design. The rotary encoder is similar to a standard rotary potentiometer (knob) in its appearance but differs in one past the 360 degree point. If a standard rotary potentiometer was mapped directly from its point to a position in space, the potential sonic trajectories directly controlled by the potentiometer would be limited to with clockwise or counterclockwise movement up to 360 degrees; therefore, continuous circular motions would not be possible. Rotary encoders remove this limitation, allowing for continuous circular spatial control: sound sources can be spun continuously around a space.

The position of the encoder is read by an Arduino Mega microcontroller. The ATMEGA 2560-equipped Arduino Mega was chosen for its multiple external interrupts, allowing many rotary encoders to easily be simultaneously decoded. Additionally the Arduino platform was chosen due to the availability of musical interface-specific firmware libraries [4]. The custom Arduino firmware sends serial data to Processing, which in turn can send either OSC [15] or MIDI messages to any audio application. The mapping of this data is discussed in section 4.2.

3. SPATIALISATION ALGORITHMS

The traditional setup for a diffusion performance involved the mapping of each fader on a mixing desk directly to the gain of a particular speaker. As speaker orchestrations grew in size, the number of speakers quickly outweighed the number of faders; therefore, speakers were divided into pairs or groups with one fader controlling the gain for the entire group. The possible spatial trajectories are limited by the physical restrictions of the performer and the specific grouping of the speakers. The subsequent sections outline the spatialisation algorithms that have been implemented into these new diffusion interfaces with an emphasis on their potential to give a performer an increased expressivity in their diffusion.

3.1. Stereo Pairing
Stereo pairing is the most traditional spatialisation technique implemented. This mode divides the speaker configuration into vertical pairs (as shown in Figure 3) and allows the performer to control the pair of speakers to be used and the stereo spread between said pair.

Figure 1. The BrickTable [7]

Figure 2. Rotary Encoder Performance Interface

Figure 3. Division of Stereo Pairs

Figure 4. User Controlling The Spread of A Sound on tactile.space

While this technique limits the possible sonic trajectories that may be performed live, it does maintain a great deal of flexibility in speaker configurations, as it has no real reliance on equidistant speakers. The system is designed to fade in and out of each speaker pair as a sound moves through the space. Though the default setting for fade time is 500ms, the performer may configure this to their needs.

3.2. Vector Base Amplitude Panning
Vector Base Amplitude Pairing (VBAP) is a spatialisation technique that was introduced by Ville Pulkki in the 1990s [14]. VBAP extends what had already been achieved in frontal stereo phantom source positioning into a 2-dimensional ring of speakers, thus allowing the creation of a phantom image at any point in a panophonic array. Unlike in the Stereo Pairing spatialisation technique, each speaker in the array is part of two pairs of speakers, one with each of its adjacent speakers. Pulkki called this pair-wise panning. Once the appropriate pair of speakers for creating a phantom source in the desired location has been deciphered, any pan pot algorithm may be used to control the gain factors for the speakers creating the image.

This technique allows for an accurate creation of phantom images in a panophonic array, but does not allow for any sense of spatial depth; as such, all sounds are perceived at the edge of the speaker array.

3.3. Source Spreading
The Vector Base Amplitude Panning technique of spatialisation allows the creation of discrete phantom source positions with in the spatial field, but doesn’t allow for size or spread of that position, nor does the Stereo Pairing technique. In an attempt to increase expressivity in diffusion performance, the ability to control spatial spread of a source was developed. In the tactile.space multi-touch user interface this is done by placing a second finger inside an audio object and separating the two fingers in an arch shape around the representation of the sweet spot.

By spreading a source position, the performer may create partial of full immersion within the sound field. The position of each of the edges of the source is deciphered by the same techniques discussed in section 3.2; subsequently, any speakers that fall between the two extremes of the arc are set to a gain factor of 0.8, creating a wall of sound of the desired size. If the arc shape reaches a width of 345 degrees, it is assumed that the desired effect is a full immersion in the sound field and the gain factors for all speakers are updated accordingly.

3.4. Distance Encoding
A common problem among the majority of spatialisation techniques including those discussed in this paper is their ineptitude in creating a perception of spatial depth in a panophonic speaker array. In an attempt to provide the performer with more expressivity in the diffusion, we have implemented a distance-encoding algorithm into these systems. The distance encoding system is based on an implementation of the 1/r law of atmospheric absorption. As sound waves travel through the air, they encounter friction caused by contact with air particles. Therefore, the amplitude of a sound decreases with any distance traveled [1]. Further, the spectral content is lost at varying rates depending on the amount of distance traveled; the higher frequencies drop off first, with a subsequent decrease in the cutoff frequency accelerating with further distance traveled. In order to simulate this phenomenon, spectral filtering is applied to the waveform of the incoming sound source based on the perceptual distance desired. The final signal process applied to simulate a change in distance perception of the space is a small amount of reverberation, mimicking the natural reverberation that occurs with a sound that has traveled a further distance. Listeners hear the reflection of the space relatively
closer to the original sound source causing confusion between what is the original sound source and the reflected sound that is perceived as resonance. This signal processing is implemented in Max/MSP.

As these laws are based on sounding objects in a free field environment and not their reconstruction on a speaker-based system, the best one can hope for is an illusion of perceptual depth. While the distance encoding was conceived as a way to allow the performer to place sounds within the edge of the speaker array, the sweet spot, it is important to consider that human distance localization is much more accurate in relative rather than precise localization. Therefore, while it may seem pertinent to assume the maximum distance for a piece would be the distance from the speakers to the sweet spot, it was found by performers that setting this distance for aesthetic rather than physical reasons allowed greater expressivity in performance. Some performers chose a small perceptual space and opted for subtle and finite changes within the space, while others went for greater width to give the perceptual depth range potential for more variation within their piece. The maximum distance for the distance encoding system may be set by the performer at any distance between 1 and 20 meters. Each meter of perceptual space is represented on the GUI by a faint grey circle allowing the user visual feedback for distance location as shown in Figure 5.

4. PERFORMANCE CASE STUDIES

The following case studies describe two different spatialisation performance interfaces that have been designed and developed by the authors. The two interfaces were developed for differing contexts in order to meet the needs of performers and aesthetic desires for specific pieces. Both interfaces were designed with a goal to increase the expressive and performative qualities of a diffusion performance and incorporate the techniques discussed in section 3.

4.1. tactile.space

tactile.space is a multi-touch performance interface for sound diffusion. It was developed as a generic interface that could be configured to the needs of a variety of performers and composers and could be used in a concert setting in the place of a mixing desk (the most common diffusion interface). One of the major design considerations was to create an interface that was highly intuitive and very easy to use, so the diffusion artist would not need to undergo extensive training on the interface. It was hoped that such an interface might also increase the gestural performance elements of diffusion practice and allow the performer a heightened level of expressivity and control. The interface is not only designed to be easily configured to each performer’s aesthetic desires. Some user-defined settings include the number of speakers and their configuration, the number of audio input channels and their type (live or audio file), the maximum distance desired for the distance encoding functions, and various fade rates.

Since its development in 2012, tactile.space has been used in a number of concert settings. One of these settings was a traditionally-inspired diffusion concert featuring eight performer/composers diffusing their own acoustic works. Each performer was able to configure the interface in their own way depending on the aesthetic needs of their piece.

Chorus

The performers split their fixed media compositions into a number of audio stems; some stems have frequency bands, others grouping specific sonic gestures or textures.

On start up, the performer is presented with a graphical user interface that has a visual representation of each of their audio streams and the spatial field (shown in Figure 5). The user may then touch and drag the audio objects displayed on the right of the BrickTable into the speaker array in their desired spatial location; the gain factors and distance functions will be calculated to create a phantom source image in that space.

tactile.space has also been used as a diffusion tool for the live electronics piece nebular, which was performed at the 2012 New Zealand Electro-acoustic Music Symposium. Nebular features Blake Johnston’s zZither [9] as the input device; tactile.space receives 8 channels of live input from the zZither, each having undergone a separate audio effects process. The collaborative piece allows for a number of interactive relationships to be developed throughout. The improvisation nature of the piece means both the performers have a dynamic relationship with each other and the spatial field. The zZither is able to react to sonic trajectories in real time, while tactile.space can react to gestural and textual sonic events. The visual element and gestural nature of tactile.space provides musicians collaborating with diffusion artists the opportunity to see and predict potential sonic trajectories that the diffusion artist may be developing in the performance.

These spatial relationships, which in traditional diffusion setups may have been opaque or difficult to achieve, are brought forward with tactile.space, creating transparency in performance for the collaborator and audience alike.

4.2. Chronus

Unlike tactile.space, Chronus was a piece-specific interface. It was built for diffusion performance with the aesthetic and spatial element of any given piece to be just as dynamic and engaging to the audience as is any other element. While this phenomenon is often hindered with a diffusion artist’s lack of accessibility to suitable rehearsal spaces and the abstraction of their standard user interface, by advancing the performance interface for spatialisation the diffusion artist is able to use the space expressively and have their collaborator do the same.

5. CONCLUSIONS AND FUTURE WORK

Currently, a second iteration of tactile.space is being developed. This version is being targeted to mobile computing platforms, as well as including further gesture recognition to allow more complex sonic trajectories to be achieved and including new spatialisation algorithms. Chronus interface is inspired further designs of spatialisation tools for performance with sound sculptures and interactive installations. It is hoped that more of these types of interfaces will be developed soon. The single-point-source nature of the encoder-based Chronus has, up to this point, not allowed for any variation of the width of phantom sources, current research includes looking for a way to allow this without compromising the intuitive and gestural simplicity of the interface.

These two new interfaces represent a new trend in diffusion performance wherein the focus is not just on a spread of sound through space, but also the means by which the spatialisation occurs and is controlled by the performer. The interfaces encourage the performance of the spatial element of any given piece to be just as dynamic and engaging to the audience as is any other element. While utilizing the same techniques and spatialisation algorithms, the two interfaces had different practice concerns, therefore the aesthetic design of each interface is individualized. A user study evaluating the success of tactile.space was completed; the findings are available in Johnson (2013) [8].

REFERENCES

The sonic output of Bacchus is transmitted via a microphone to Chronus’s software and is subsequently diffused through a multichannel speaker array.

The expressive capabilities of Chronus encourage a similar interaction with space from both performers as in tactile.space. With the increased intuitive relationship between performative gestural and trajectory, both performers may easily read, and therefore predict and react to, each other’s intentions. While this phenomenon is arguably one that comes from two performers practicing and understanding each other’s musical intentions and styles, it is often hindered with a diffusion artist’s lack of accessibility to suitable rehearsal spaces and the abstraction of their standard user interface. By advancing the performance interface for spatialisation the diffusion artist is able to use the space expressively and have their collaborator do the same.
closer to the original sound source causing confusion between what is the original sound source and the reflected sound that is perceived as resonance. This signal processing is implemented in Max/MSP1. As these laws are based on sounding objects in a free field environment and not their reconstruction on a speaker-based system, the best one can hope for is an illusion of perception in spatial depth. While the distance encoding was conceived as a way to allow the performer to place sounds within the edge of the speaker array—the sweet spot—it is important to consider that this distance localization is much more accurate in relative rather than precise localization. Therefore, while it may seem pertinent to assume the maximum distance for a piece would be the distance from the speakers to the sweet spot, it was found by performers that setting this distance for aesthetic rather than physical reasons allowed greater expressiveness in performance. Some performers chose a small perceptual space and opted for subtle and finite changes within the space, while others went for greater width to give the perceptual depth range potential for more variation within their piece. The maximum distance for the distance encoding system may be set by the performer at any distance between 1 and 20 meters. Each meter of perceptual space is represented on the GUI by a faint grey circle allowing the user visual feedback for distance location as shown in Figure 5.

4. PERFORMANCE CASE STUDIES

The following case studies describe two different spatialisation performance interfaces that have been designed and developed by the authors. The two interfaces were developed for differing contexts in order to meet the needs of performers and aesthetic desires for specific pieces. Both interfaces were designed with a goal to increase the expressive and performative qualities of a diffusion performance and incorporate the techniques discussed in section 3.

4.1. tactile.space

tactile.space is a multi-touch performance interface for sound diffusion. It was developed as a generic interface that could be configured to the needs of a variety of performers and composers and could be used in a concert setting in the place of a mixing desk (the most performers and composers could be used in a number of concert settings. One of these settings was a traditionally-inspired diffusion concert featuring eight performer/composers diffusing their own acoustic works. Each performer was able to configure the interface in their own way depending on the aesthetic needs of their piece.

Since its development in 2012, tactile.space has been used in a number of concert settings. One of these settings was a traditionally-inspired diffusion concert featuring eight performer/composers diffusing their own acoustic works. Each performer was able to configure the interface in their own way depending on the aesthetic needs of their piece.

Figure 5. The start up GUI of tactile.space

The performers split their fixed media compositions into a number of audio stems; some had an emphasis on frequency bands, others grouping specific sonic gestures or textures.

On start up, the performer is presented with a graphical user interface that has a visual representation of each of their audio stems and the spatial field (shown in Figure 5). The user may then touch and drag the audio objects displayed on the right side of the interface into the speaker array in their desired spatial location; the gain factors and distance functions will be calculated to create a phantom sound image in that space.

tactile.space has also been used as a diffusion tool for the live electronics piece nebular, which was performed at the 2012 New Zealand Electro-acoustic Sonic Symposium2. Nebular features Blake Johnston’s eZither [9] as the input device; tactile.space receives 8 channels of live input from the eZither, each having undergone a separate audio effects process. The collaborative piece allows for a number of interactive relationships to be developed throughout. The improvised nature of the piece means both the performers have a dynamic relationship with each other and the spatial field. The eZither is able to react to sonic trajectories in real time, while tactile.space can react to gestural and textual sonic events. The visual element and gestural nature of tactile.space proved to musicians collaborating with diffusion artists the opportunity to see and predict potential sonic trajectories that the diffusion artist may be developing in the performance. These spatial relationships, which in traditional diffusion setups may have been opaque or difficult to achieve, are brought forward with tactile.space, creating transparency in performance for the collaborator and audience alike.

4.2. Chronus

Unlike tactile.space, Chronus was a piece-specific interface. It was built for diffusion performance with the aesthetic of a participatory and gestural interface. A desire for portability and aesthetic continuity drove the development of Chronus. The piece was performed in November 2012 at the University of California Irvine.

Chronus features three rotary encoders, as described in section 2.2. Two of the encoders map directly to the angle of the source position to be deciphered into speaker gains through the VIAP spatialisation technique. The third encoder controls the radius for the distance perception. The angle position data is mapped to two separate channels of incoming audio data from the Bacchus sculptures and the radius data responds to both signals unifying the sculptures.

Figure 6. The Bacchus sound sculptures, whose design informed the appearance of the Chronus interface in Figure 2

The aesthetic design of the Chronus interface was intended to resemble the Bacchus sculptures and control interface as closely as possible so the piece would be conceived as a coherent visual whole. Bacchus, shown in Figure 6, is a sculpture focusing on microsounds produced by mechanically-plucked glass objects, and is built with a variety of transparent materials; these transparent materials were further used in the Chronus interface. During performances involving the Chronus interface and the Bacchus sound sculptures, the speed of the motorized plucking mechanisms of the Bacchus sculptures are controlled by a custom potentiometer-equipped Arduino-based MIDI interface. Like the Bacchus sculptures and the Chronus spatialisation interface, the motor control interface is built of transparent materials: audiences viewing performances involving these three elements are presented with visually cohesive sound generation and modification apparatus.

The sonic output of Bacchus is transmitted via a microphone to Chronus’s software and is subsequently diffused through a multichannel speaker array.

The expressive capabilities of Chronus encourage a similar interaction with space from both performers as in tactile.space. With the increased intuitive relationship between performative gestural and sonic trajectory, both performers may easily read, and therefore predict and react to, each other’s intentions. While this phenomenon is arguably one that comes from two performers practicing and understanding each other’s musical intentions and styles, this is often hindered with a diffusion artist’s lack of accessibility to suitable rehearsal spaces and the abstraction of their standard user interface. By advancing the Chronus interface for spatialisation the diffusion artist is able to use the space expressively and have their collaborator do the same.

5. CONCLUSIONS AND FUTURE WORK

Currently, a second iteration of tactile.space is being developed. This version is being targeted to mobile computing platforms, as well as including further gesture recognition to allow more complex sonic trajectories to be achieved and including new spatialisation algorithms. Chronus interface is inspired further designs of spatialisation tools for performance with sound sculptures and interactive installations. It is hoped that more of these types of interfaces will be developed soon. The single-point-source nature of the encoder-based Chronus has, up to this point, not allowed for any variation of the width of phantom sources, current research includes looking for a way to allow this without compromising the intuitive and gestural simplicity of the interface.

These two new interfaces represent a new trend in diffusion performance wherein the focus is not just on a spread of sound through space, but also the means by which the spatialisation occurs and is controlled by the performer. The interfaces encourage the performance of the spatial element of any given piece to be just as dynamic and engaging to the audience as is any other element. Whilst utilizing the same techniques and spatialisation algorithms, the two interfaces had different practice concerns, therefore the aesthetic design of each interface is individualized. A user study evaluating the success of tactile.space was completed; the findings are available in Johnson (2013) [8].

6. REFERENCES

1 The piece may be viewed at http://vimos.com/45230938

2 http://cycling74.com/

EXTENDED NON-LINEAR APPLICATIONS AND THE VISUAL AESTHETICS OF REAL-TIME SCORES

Dr. David Kim-Boyle
Sydney Conservatorium of Music
University of Sydney
Macquarie St, Sydney, NSW 2000
AUSTRALIA

ABSTRACT

The author examines some of the unique musical possibilities afforded by the use of performance scores that are generated in real-time. The approaches of various composers is examined and their use of such scores is shown to be especially well suited to exploring extended musical applications of non-linear processes. The prevalent use of animated graphic notation within many of real-time scores is shown to lend them a unique visual appeal and place a renewed emphasis on the scores visual aesthetics. The author argues that works featuring such scores allow performers to engage with musical processes in unique ways and, to that end, offer exciting new musical and formal possibilities.

1. REAL-TIME SCORES, EXTENDED NON-LINEAR FORMS, AND DECISION-MAKING CONSTRAINTS

Over the past ten years, a growing number of composers have explored the use of performance scores which are generated in real-time and displayed for performers on laptop screens, tablet computers, or via video projection systems. The use of such scores allows composers to extend their musical possibilities.

While non-linear processes can manifest themselves in many levels of a musical work, it is perhaps their use in the large-scale structural organization of a work that has received the most attention. At their most basic level, such processes call for the performer/s to determine the sequence in which discrete musical sections of a work are performed. In Earle Brown’s Available Forms I (1961), for example, the conductor determines the order of the work’s various subsections, and indicates the succession to performers through hand gestures. Similarly, in Stockhausen’s celebrated Klavierstücke XI (1956), it is left to the pianist to determine the order of the work’s nineteen discrete musical sections all of which are arranged around a large, single page score, see Figure 1.

While non-linear processes can manifest themselves in many levels of a musical work, it is perhaps their use in the large-scale structural organization of a work that has received the most attention. At their most basic level, such processes call for the performer/s to determine the sequence in which discrete musical sections of a work are performed. In Earle Brown’s Available Forms I (1961), for example, the conductor determines the order of the work’s various subsections, and indicates the succession to performers through hand gestures. Similarly, in Stockhausen’s celebrated Klavierstücke XI (1956), it is left to the pianist to determine the order of the work’s nineteen discrete musical sections all of which are arranged around a large, single page score, see Figure 1.

While works such as Brown’s, Stockhausen’s, and many others founded on the interchangeability of subsections inject various degrees of unpredictability into the experience of the work, such a process is founded on the aesthetic principle that all particular orderings are equally valid. This does not necessarily imply, however, that orderings are not subject to certain biases, anchoring effects, or other decision-making constraints [4]. The ability to avoid such biases and to implement more complex ordering processes is a particularly attractive feature of real-time scores and amongst one of several possibilities afforded by real-time scores.

2. APPLICATIONS

2.1. Complex orderings and coordination

In Kim-Boyle’s Valves and Endes (2005, rev. 2010), for piano and computer, the score, which is generated in real-time, consists of score fragments of various works from the solo piano repertoire [6]. These fragments succeed one another according to a first-order Markov chain procedure that employs weighted probabilities to determine the likelihood that one score fragment will follow another. For example, fragment A may follow fragment B with a probability of 30%, fragment B may follow fragment B with a probability of 0%, fragment C may follow fragment B with a probability of 60% and fragment D may follow fragment B with a probability of 10% and so on, see Figure 2. Without the automation of this selection process, it is unlikely that, during performance, the pianist would be able to implement such a desired ordering.

Figure 1. Excerpt from the score for Stockhausen’s Klavierstücke XI (1956), in which the pianist determines the ordering of nineteen musical fragments.