A convenient synthesis of novel [1,2,4]oxadiazolo[4,3-a][1,5]benzodiazepine derivatives

Lidija Kosychova,* Zita Stumbreviciute, Regina Janciene, Zita Staniulyte, and Benedikta Dale Puodziunaite

Vilnius University Institute of Biochemistry, Mokslininku 12, LT-08662 Vilnius, Lithuania
E-mail: lidija.kosychova@bchi.vu.lt

Abstract
Novel tricyclic substituted 5,6-dihydro-4H-[1,2,4]oxadiazolo[4,3-a][1,5]benzodiazepin-1-one derivatives were prepared by the thermal intramolecular cyclization of tetrahydro-1,5-benzodiazepin-2-one O-(ethoxycarbonyl)oximes. The latter were obtained from the corresponding hydroxyimino-1,5-benzodiazepines and ethyl chloroformate.

Keywords: Hydroxyimino-1,5-benzodiazepines, [1,2,4]oxadiazoles, ethyl chloroformate

Introduction

The ability of the benzodiazepines as a chemical class to have an effect on different processes in the organism has found application as pharmaceutical.1 It is known, in fact, that the pharmaceutical activity appears to be exchanged when different heterocyclic rings are annelated to the basic 1,4- and 1,5-benzodiazepine systems.1,2 In previous papers we have reported the synthesis of polycyclic peri-annelated imidazo[1,5]benzodiazepines3 and derivatives containing imidazo4, triazolo5 and thiazolo6 nucleus fused to the “a” edge of the seven-membered ring of the 1,5-benzodiazepine system. In continuation of our investigation on tricyclic benzodiazepines, we have extended the cycloaddition strategy to develop a synthetic pathway towards 1,5-benzodiazepines including a 1,2,4-oxadiazole nucleus. In addition, compounds incorporating different oxadiazole rings have been attracting widespread attention due to their broad spectrum of biological activity in both agrochemical and pharmaceutical fields.7

A cyclofunctionalization strategy is based on exploiting the reactivity of the C=S group of the corresponding derivatives towards some nucleophiles, such as hydroxylamine. In recent years, some [1,2,4]oxadiazolo[1,5]benzodiazepine derivatives were prepared via the 1,3-dipolar cycloaddition to the dipolarophile C=N moiety of the diazepine skeleton.2-8-11
Results and Discussion

We present in this paper the preparation of the new tricyclic derivatives in 1,5-benzodiazepine series. For cyclofunctionalization of this system, we exploited the reactivity of the thiolactam function. Thiolactams 1a-i were synthesized to supplement the lack of reactivity of the corresponding lactams6,12 towards nucleophiles. Thiolactams 1a-i were converted to the hydroxyimino-1,5-benzodiazepines 2a-i in good yields by the action of hydroxylamine hydrochloride in boiling dry ethanol in the presence of sodium acetate (Scheme 1). The compounds 2a-f were reported previously by us.13 Thus, oximes 2a-i were used as the starting materials for the construction of 1,2,4-oxadiazole derivatives. Furthermore, heterocyclic hydroxyimino derivatives were generally utilized as useful building blocks for the synthesis of condensed systems containing five-membered heterocyclic rings.$^{14-17}$ The structure of tetrahydro-1,5-benzodiazepinone oximes 2g-i was supported by the following analysis of the IR and NMR spectra. The IR spectra exhibited typical NH and OH stretching bands between 3258-3131 cm$^{-1}$ as well as stretching band for C=O at 1642-1630 cm$^{-1}$ and C=O at 1679-1672 cm$^{-1}$. The 1H NMR spectra showed sharp singlets of OH groups and broad singlets of NH groups at 9.61-9.85 and 8.33-8.38 ppm, respectively.

Scheme 1. The synthesis of [1,2,4]oxadiazolo[4,3-\(a\)][1,5]benzodiazepine derivatives 4a-i.

The treatment of oximes 2a-i with an equivalent amount of ethyl chloroformate in the presence of triethylamine led to the non cyclic corresponding products – O-(ethoxycarbonyl)-substituted 1,5-benzodiazepine derivatives. This reaction was accomplished during 2 hours at
low temperature (-3 °C) in toluene. The application of this pathway to the preparation of compounds 3a-i gave intermediates suitable for the further synthesis of tricyclic oxadiazoles. The former publications reported the process of cyclization of hydroxyimino derivatives to [1,2,4]oxadiazolo derivatives where the starting compounds were allowed to react with phosgene in refluxing toluene.14,15 An embodiment of this reaction has emphasized a preference for the presence of the base, mostly an organic base dissolved in an organic solvent inert in this reaction. An analogous synthesis of oxadiazole derivatives was described16 but the reaction is carried out at low temperature under nitrogen. So, the treatment of 2a-i with ethyl chloroformate enabled us to avoid phosgene for the synthesis of condensed heterocyclic compounds. The TLC monitoring showed that in these conditions only one product was obtained. Compounds 3b, f-i were isolated as crystalline substances and identified. Decomposition or partial cyclization of oxime derivatives 3a, c-e during the purification was observed therefore compounds 3a, c-e were applied as crude products for further cyclization. The structure of compounds 3b, f-i was confirmed on the basis of their spectroscopic characteristics. The long range coupling between NH proton and one proton of the methylene group of diazepine heterocycle ($J_{H-N-C-C-H} = 1.6$ Hz) was observed in some spectra (3f, i).

Finally, the cyclocondensation of compounds 3a-i was achieved by heating at reflux in the mixture of dioxane-water for 5 h. Oxadiazolo-benzodiazepines 4a-i were obtained in good yields (61-91%, except 4a which was obtained in 50% yield). The cyclization reaction was monitored by TLC analysis. The structures of novel compounds were confirmed by elemental analysis and IR, 1H and 13C NMR spectroscopic data. In the 1H NMR spectra, the assignment of protons of benzo fragment of compounds 4a-c, g-i was confirmed by NOE experiments. The NOEs (6-7%) were observed on aromatic proton H-7 at 7.17-7.19 ppm when methyl group (δ 2.83 ppm) was irradiated. The irradiation of acetyl group (δ 1.71-1.77 ppm) exhibited NOEs (2-3%) with H-7 at 7.38-7.39 ppm. This unequivocally proves the assignment of this proton. All other protons of this benzo fragment were assigned starting from H-7 proton signal using 2D COSY spectra. It is worth noting that essential low-field shift of H-10 proton with respect to other protons of benzene ring were observed probably due to the deshielding effect of the C=O group. After assignment of all protons of benzo fragment of compounds 4a-c, g-i, it became possible to unambiguously identify the carbon atoms of this fragment in 13C NMR spectra by means of 1H-13C 2D NMR (HETCOR) experiments. Moreover, in the 13C NMR spectra of compounds 4a-i the C-4, C-3a resonances are mainly influenced by the replacement of thiolactam6,12 functionality with oxadiazole nucleus and shifted upfield (by 10-20 and 48-50 ppm, respectively) with respect to precursors 1a-i.

Conclusions

In summary, the interaction of 4-hydroxyimino-1,5-benzodiazepines 2a-i with ethyl chloroformate afforded the corresponding N–OH acylated compounds 3a-i. The thermal
cyclization reaction of 3a-i provided a simple method for the preparation of novel tricyclic [1,2,4]oxadiazolo[4,3-a][1,5]benzdiazepine derivatives 4a-i.

Experimental Section

General. Melting points were measured on a Barnstead International MEL-TEMP capillary melting point apparatus and are not corrected. Elemental analyses (C, H, N) were performed on an Elemental Analyser CE-440. IR spectra (4000-400 cm⁻¹) were recorded on a PERKIN Elmer Spectrum GX FT-IR spectrometer in KBr pellets. ¹H and ¹³C NMR spectra were recorded at 300 and 75 MHz respectively on a Varian Unity Nova 300 spectrometer with DMSO-d₆ (compounds 2g-i) and CDCl₃ (compounds 3b, f-i and 4a-i) as solvent. The chemical shifts are referenced to tetramethylsilane (δ ¹H = 0 ppm) and the solvent signal CDCl₃ (δ ¹³C = 77.0 ppm) and DMSO-d₆ (δ ¹³C = 39.5 ppm). The CH₃, CH₂, CH and C groups in ¹³C NMR were differentiated by means of the APT or DEPT method. The reactions were monitored by TLC using Silufol UV254 silica gel plates in the system: benzene-methanol (v/v, 6:1).

Thiolactams 1a-i were synthesized according to the described procedure.¹² Hydroxyimino-1,5-benzodiazepines 2a-f were synthesized from the corresponding thiolactams 1a-f by treatment with hydroxylamine hydrochloride.¹³

General procedure for the synthesis of 1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one oximes (2g-i)
The mixture of thiolactam 1g-i (10.0 mmol), hydroxylamine hydrochloride (10.4 g, 15.0 mmol) and sodium acetate (12.6 g, 15.0 mmol) in anhydrous ethanol (200 mL) was refluxed for 8 h. After cooling, the suspension obtained was filtered. The solvent was evaporated under reduced pressure. The resulted solid residue was recrystallized from an appropriate solvent to give white crystals.

5-Acetyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one oxime (2g). Yield 1.60 g, 73%, mp 187-189 ºC (methanol). IR (νmax, cm⁻¹): 3258, 3144, 1677, 1641. ¹H NMR (DMSO-d₆): δ 1.60 (3H, s, 5-CH₃), 2.22-2.38 (2H, m, 3-CH₂), 3.27 (1H, m, 4-CH₂), 4.51 (1H, m, 4-CH₂), 7.06 (1H, dt, 3JHH = 1.6 Hz, 3JHH = 8.3 Hz, Ar), 7.20-7.33 (3H, m, Ar), 8.33 (1H, br.s, NH), 9.61 (1H, s, OH). ¹³C NMR (DMSO-d₆): δc 22.4 (5-CH₃), 26.9 (C-3), 46.1 (C-4), 121.9, 123.2, 128.9, 129.6, 131.7, 138.3, 148.5 (C-2), 169.5 (5-CO). Anal. Calcd for C₁₁H₁₃N₃O₂ (219.24): C, 60.26; H, 5.98; N, 22.56. Found: C, 59.92; H, 6.04; N, 21.51.

5-Acetyl-3-methyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one oxime (2h). Yield 1.98 g, 85%, mp 214-215 ºC (1-propanol). IR (νmax, cm⁻¹): 3235, 3135, 1679, 1642. ¹H NMR (DMSO-d₆): δ 1.04 (3H, d, 3JHH = 6.7 Hz, 3-CH₃), 1.62 (3H, s, 5-CH₃), 2.52 (1H, m, 3-CH), 3.32 (1H, dd, 3JHH = 6.0 Hz, 3JHH = 12.5 Hz, 4-CH₂), 4.22 (1H, dd, 3JHH = 12.5 Hz, 2JHH = 12.5 Hz, 4-CH₂), 7.07 (1H, dt, 3JHH = 1.5 Hz, 3JHH = 7.6 Hz, Ar), 7.21-7.34 (3H, m, Ar), 8.35 (1H, br.s, NH), 9.85
(1H, s, OH). 13C NMR (DMSO-d$_6$): δ 13.4 (3-CH$_3$), 22.4 (5-CH$_3$), 31.7 (C-3), 53.6 (C-4), 122.0, 123.1, 128.9, 129.3, 132.7, 138.0, 150.3 (C-2), 169.3 (5-CO). Anal. Calcd for C$_{12}$H$_{15}$N$_3$O$_2$ (233.27): C, 61.79; H, 6.48; N, 18.01. Found: C, 61.60; H, 6.62; N, 18.45.

5-Acetyl-4-methyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one oxime (2i). Yield 1.89 g, 81%, mp 218-220 °C (1-propanol). IR (v$_{\text{max}}$, cm$^{-1}$): 3258, 3131, 1672, 1630. 1H NMR (DMSO-d$_6$): δ 1.04 (3H, d, 3J$_{HH}$ = 6.3 Hz, 4-CH$_3$), 1.55 (3H, s, 5-CH$_3$), 1.90 (1H, dd, 3J$_{HH}$ = 12.4 Hz, 2J$_{HH}$ = 14.1 Hz, 3-CH$_2$), 2.37 (1H, dd, 3J$_{HH}$ = 5.5 Hz, 2J$_{HH}$ = 14.2 Hz, 3-CH$_2$), 4.85 (1H, m, 4-CH), 7.05 (1H, dt, 4J$_{HH}$ = 1.4 Hz, 3J$_{HH}$ = 7.8 Hz, Ar), 7.16 (1H, dd, 4J$_{HH}$ = 1.4 Hz, 3J$_{HH}$ = 7.8 Hz, Ar), 7.22 (1H, dd, 4J$_{HH}$ = 1.4 Hz, 3J$_{HH}$ = 7.9 Hz, Ar), 7.30 (1H, dt, 4J$_{HH}$ = 1.4 Hz, 3J$_{HH}$ = 7.8 Hz, Ar), 8.38 (1H, br.s, NH), 9.63 (1H, s, OH). 13C NMR (DMSO-d$_6$): δ 18.8 (4-CH$_3$), 22.6 (5-CH$_3$), 34.3 (C-3), 51.9 (C-4), 121.0, 123.0, 129.0, 129.6, 130.8, 138.6, 148.4 (C-2), 168.8 (5-CO). Anal. Calcd for C$_{12}$H$_{15}$N$_3$O$_2$ (233.27): C, 61.79; H, 6.48; N, 18.01. Found: C, 61.54; H, 6.66; N, 18.24.

General procedure for preparation of O-(ethoxycarbonyl)oximes (3b, f-i)
The solution of oxime 2b, f-i (0.3 mmol) and triethylamine (0.42 mL, 0.3 mmol) in toluene (80 mL) was stirred and cooled to -3 °C temperature. To this mixture, ethyl chloroformate (0.29 mL, 0.3 mmol) in toluene (20 mL) was added drop wise during 2 h with stirring, maintaining temperature of the reaction mixture between -3 and 0 °C. After that the mixture was kept in a refrigerator overnight. Then triethylamine hydrochloride precipitate was filtered and the filtrate was concentrated under reduced pressure to the volume of 30 mL. After cooling, the precipitate was collected and recrystallized from an appropriate solvent to give white crystals of 3b, f-i.

3,5-Dimethyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one O-(ethoxycarbonyl)oxime (3b). Yield 0.56 g, 67%, mp 110-112 °C (diethyl ether). IR (v$_{\text{max}}$, cm$^{-1}$): 3317, 1754, 1634. 1H NMR (CDCl$_3$): δ 1.19 (3H, d, 3J$_{HH}$ = 6.8 Hz, 3-CH$_3$), 1.38 (3H, t, 3J$_{HH}$ = 7.1 Hz, 2-CH$_3$), 2.70 (1H, m, 3-CH), 2.82 (3H, s, 5-CH$_3$), 3.18-3.35 (2H, m, 4-CH$_2$), 4.33 (2H, q, 3J$_{HH}$ = 7.1 Hz, 2-CH$_2$), 6.92 (1H, dd, 4J$_{HH}$ = 1.6 Hz, 3J$_{HH}$ = 7.8 Hz, Ar), 6.93-7.01 (2H, m, Ar), 7.01 (1H, br.s, NH), 7.15 (1H, dd, 4J$_{HH}$ = 1.5 Hz, 3J$_{HH}$ = 8.0 Hz, Ar). 13C NMR (CDCl$_3$): δ 13.2 (3-CH$_3$), 14.4 (2-CH$_3$), 32.8 (C-3), 64.4 (2-CH$_2$), 66.0 (C-4), 119.0, 121.9, 123.0, 129.0, 129.6, 130.8, 138.6, 148.4 (C-2), 153.1, 153.9. Anal. Calcd for C$_{14}$H$_{19}$N$_3$O$_3$ (277.32): C, 60.63; H, 6.91; N, 15.15. Found: C, 60.97; H, 6.70; N, 15.64.

4-[(Ethyloxy carbonyl)oxy]imino]-2-methyl-N-phenyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-1-carboxamide (3f). Yield 0.95 g, 83%, mp 138-140 °C (toluene). IR (v$_{\text{max}}$, cm$^{-1}$): 3347, 3206, 1764, 1662, 1632. 1H NMR (CDCl$_3$): δ 1.27 (3H, d, 3J$_{HH}$ = 6.3 Hz, 2-CH$_3$), 1.36 (3H, t, 3J$_{HH}$ = 7.1 Hz, 4-CH$_3$), 2.13 (1H, dd, 3J$_{HH}$ = 12.4 Hz, 2J$_{HH}$ = 14.4 Hz, 3-CH$_2$), 2.72 (1H, m, 3-CH), 5.13 (1H, m, 2-CH), 5.88 (1H, br.s, NHCO), 6.99 (1H, m, H-4$'$), 7.11 (1H, br.s, NH), 7.17 (1H, dd, 4J$_{HH}$ = 1.4 Hz, 3J$_{HH}$ = 7.8 Hz, Ar), 7.21-7.27 (4H, m, Ar), 7.29 (1H, dt, 4J$_{HH}$ = 1.4 Hz, 3J$_{HH}$ = 7.8 Hz, Ar), 7.44 (1H, m, Ar). 13C NMR (CDCl$_3$): δ 14.3 (4-CH$_3$), 19.7 (2-CH$_3$), 34.3 (C-3), 54.0 (C-2), 64.8 (4-CH$_2$), 119.2 (C-2$'$, C-6$'$), 123.1 (C-4$'$, CH), 126.3, 128.8 (C-3$'$, C-5$'$), 129.5, 129.9, 131.4, 136.9, 138.3, 153.1, 153.2.
5-Acetyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one O-(ethoxycarbonyl)oxime (3g).
Yield 0.66 g, 76%, mp 154-156 °C (toluene). IR (ν max, cm⁻¹): 3272, 1776, 1763, 1656, 1633. 1H NMR (CDCl₃): δ 1.38 (3H, t, 3 J HH = 7.1 Hz, 2-CH₃), 1.78 (3H, s, 5-CH₃), 2.48 (1H, m, 3-CH₂), 2.70 (1H, m, 3-CH₂), 3.49 (1H, m, 4-CH₂), 4.35 (2H, q, 3 J HH = 7.1 Hz, 2-CH₂), 4.85 (1H, m, 4-CH₂), 7.06 (1H, s, NH), 7.10 (1H, dd, 4 J HH = 1.3 Hz, 3 J HH = 7.9 Hz, Ar), 7.19 (1H, dd, 4 J HH = 1.3 Hz, 3 J HH = 7.9 Hz, Ar), 13C NMR (CDCl₃): δ 14.3 (2-CH₃), 22.8 (5-CH₃), 26.7 (C-3), 47.0 (C-4), 64.8 (2-CH₂), 122.5, 126.0, 129.5, 130.0, 133.1, 135.5, 153.3 (4-CO), 154.4 (C-4), 170.6 (5-CO). Anal. Calcd for C₁₄H₁₇N₃O₄ (291.30): C, 57.72; H, 5.88; N, 14.42. Found: C, 57.59; H, 5.98; N, 14.80.

5-Acetyl-3-methyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one O-(ethoxycarbonyl)oxime (3h).
Yield 0.74g, 81%, m p 133-135 °C (toluene). IR (ν max, cm⁻¹): 3274, 1761, 1671, 1649, 1633. 1H NMR (CDCl₃): δ 1.25 (3H, d, 3 J HH = 6.3 Hz, 3-CH₃), 1.38 (3H, t, 3 J HH = 7.1 Hz, 2-CH₃), 1.78 (3H, s, 5-CH₃), 2.71 (1H, m, 3-CH), 3.46 (1H, dd, 3 J HH = 6.0 Hz, 2 J HH = 12.9 Hz, 4-CH₂), 4.33 (2H, q, 3 J HH = 7.1 Hz, 2-CH₂), 4.57 (1H, dd, 3 J HH = 12.6 Hz, 2 J HH = 12.9 Hz, 4-CH₂), 7.09 (1H, m, Ar), 7.10 (1H, s, NH), 7.18 (1H, dd, 4 J HH = 1.4 Hz, 3 J HH = 7.9 Hz, Ar), 7.22 (1H, dt, 4 J HH = 1.4 Hz, 3 J HH = 7.9 Hz, Ar), 7.36 (1H, m, Ar). 13C NMR (CDCl₃): δ 12.5 (3-CH₃), 14.3 (2-CH₃), 22.6 (5-CH₃), 32.3 (C-3), 54.4 (C-4), 64.7 (2-CH₂), 122.6, 125.8, 129.4 (2C), 133.5, 135.3, 153.3 (2-CO), 156.4 (C-2), 170.4 (5-CO). Anal. Calcd for C₁₅H₁₉N₃O₄ (305.33): C, 59.01; H, 6.27; N, 13.76. Found: C, 58.82; H, 6.38; N, 14.20.

5-Acetyl-4-methyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one O-(ethoxycarbonyl)oxime (3i).
Yield 0.82g, 89%, mp 136-138 °C (toluene). IR (ν max, cm⁻¹): 3241, 1771, 1649, 1632. 1H NMR (CDCl₃): δ 1.19 (3H, d, 3 J HH = 6.3 Hz, 4-CH₃), 1.38 (3H, t, 3 J HH = 7.2 Hz, 2-CH₂), 1.72 (3H, s, 5-CH₃), 2.12 (1H, dd, 3 J HH = 12.4 Hz, 2 J HH = 14.3 Hz, 3-CH₂), 2.65 (1H, dd, 4 J HH = 1.6 Hz, 3 J HH = 5.4 Hz, 2 J HH = 14.3 Hz, 3-CH₂), 4.34 (2H, q, 3 J HH = 7.2 Hz, 2-CH₂), 5.18 (1H, m, 4-CH), 7.12 (1H, dd, 3 J HH = 1.4 Hz, 2 J HH = 7.8 Hz, Ar), 7.15 (1H, dd, 4 J HH = 1.4 Hz, 3 J HH = 7.8 Hz, Ar), 7.15 (1H, s, NH), 7.24 (1H, dt, 4 J HH = 1.4 Hz, 3 J HH = 7.7 Hz, Ar), 7.40 (1H, dt, 4 J HH = 1.5 Hz, 3 J HH = 7.8 Hz, Ar). 13C NMR (CDCl₃): δ 14.3 (2-CH₃), 19.0 (4-CH₃), 22.9 (5-CH₂), 33.9 (C-3), 53.2 (C-4), 64.7 (2-CH₂), 122.4, 125.7, 129.6, 131.1, 131.2, 135.8, 153.2 (2-C), 154.2 (2-CO), 169.8 (5-CO). Anal. Calcd for C₁₅H₁₉N₃O₄ (305.33): C, 59.01; H, 6.27; N, 13.76. Found: C, 58.86; H, 6.47; N, 14.03.

General procedure for preparation of 5,6-dihydro-4H-[1,2,4]oxadiazolo[4,3-a][1,5]benzodiazepin-1-ones (4a, c) and 4,5-dihydro-6H-[1,2,4]oxadiazolo[4,3-a][1,5]benzodiazepine-6-carboxamides (4d, e)
The solution of oxime 2a, c-e (0.3 mmol) and triethylamine (0.42 mL, 0.3 mmol) in toluene (80 mL) was stirred and cooled to -3 °C temperature. To this mixture, ethyl chloroformate (0.29 mL, 0.3 mmol) in toluene (20 mL) was added drop wise during 2 h with stirring, maintaining temperature of reaction mixture between -3 and 0 °C. After that the mixture was kept in a...
refrigerator overnight. Then triethylamine hydrochloride precipitate was filtered. The solvent was evaporated to give a solid residue which was further dissolved in 50 mL of the mixture of dioxane-water (3:2) and heated to reflux for 4-5 h. Upon the completion of cyclization (TLC) the mixture was cooled to room temperature and was diluted with chloroform (50 mL). The organic layer was separated and aqueous phase was extracted with chloroform (2×20 mL). The combined organic solution was dried over Na$_2$SO$_4$ and evaporated to dryness under reduced pressure. The white solid was recrystallized from ethyl acetate to give 4a, c-e.

6-Methyl-5,6-dihydro-4H-[1,2,4]oxadiazolo[4,3-a][1,5]benzodiazepin-1-one (4a). Yield 0.36 g, 55%, mp 155-156 °C. IR (ν$_{max}$, cm$^{-1}$): 1764. 1H NMR (CDCl$_3$): δ 2.81 (2H, t, 3J_{HH} = 6.7 Hz, 4-CH$_2$), 2.83 (3H, s, 6-CH$_3$), 3.41 (2H, t, 3J_{HH} = 6.7 Hz, 5-CH$_2$), 7.20 (1H, dd, 4J_{HH} = 1.4 Hz, 3J_{HH} = 7.8 Hz, H-7), 7.21 (1H, m, H-9), 7.40 (1H, dt, 4J_{HH} = 1.4 Hz, 3J_{HH} = 7.8 Hz, H-8), 7.56 (1H, dd, 4J_{HH} = 1.5 Hz, 3J_{HH} = 7.8 Hz, H-10). 13C NMR (CDCl$_3$): δ 23.1 (C-4), 41.9 (6-CH$_3$), 55.9 (C-5), 121.0 (C-7), 123.7 (C-8), 123.8 (C-10), 126.2 (C-10a), 129.4 (C-9), 142.9 (C-6a), 156.6 (C-1), 157.6 (C-3a). Anal. Calcd for C$_{11}$H$_{11}$N$_3$O$_2$ (217.22): C, 60.82; H, 5.10; N, 19.34. Found: C, 60.70; H, 5.11; N, 19.65.

5,6-Dimethyl-5,6-dihydro-4H-[1,2,4]oxadiazolo[4,3-a][1,5]benzodiazepin-1-one (4c). Yield 0.45 g, 65%, mp 121-123 °C. IR (ν$_{max}$, cm$^{-1}$): 1787, 1776. 1H NMR (CDCl$_3$): δ 1.19 (3H, d, 3J_{HH} = 6.3 Hz, 5-CH$_3$), 2.29 (1H, dd, 3J_{HH} = 9.7 Hz, 23J_{HH} = 14.8 Hz, 4-CH$_2$), 2.83 (3H, s, 6-CH$_3$), 3.01 (1H, dd, 3J_{HH} = 6.6 Hz, 2J_{HH} = 14.8 Hz, 4-CH$_2$), 3.76 (1H, m, 5-CH), 7.20 (1H, dd, 4J_{HH} = 1.4 Hz, 3J_{HH} = 7.9 Hz, H-7), 7.22 (1H, dt, 4J_{HH} = 1.4 Hz, 3J_{HH} = 7.8 Hz, H-8), 7.39 (1H, dt, 4J_{HH} = 1.4 Hz, 3J_{HH} = 7.8 Hz, H-9), 7.57 (1H, dd, 4J_{HH} = 1.4 Hz, 3J_{HH} = 7.9 Hz, H-10). 13C NMR (CDCl$_3$): δ 15.4 (5-CH$_3$), 31.1 (C-4), 39.4 (6-CH$_3$), 60.1 (C-5), 123.6 (C-7, C-8), 126.2 (C-10a), 129.4 (C-9), 142.9 (C-6a), 156.6 (C-1), 157.6 (C-3a). Anal. Calcd for C$_{12}$H$_{13}$N$_3$O$_2$ (231.25): C, 62.33; H, 5.67; N, 18.17. Found: C, 62.52; H, 5.57; N, 18.00.

1-Oxo-N-phenyl-4,5-dihydro-6H-[1,2,4]oxadiazolo[4,3-a][1,5]benzodiazepine-6-carboxamide (4d). Yield 0.59 g, 61%, mp 214-216 °C. IR (ν$_{max}$, cm$^{-1}$): 3416, 3335, 1790, 1692, 1673. 1H NMR (CDCl$_3$): δ 2.4-3.2 (2H, br.s, 4-CH$_2$), 3.3-4.2 (1H, br.s, 5-CH$_2$), 4.4-5.2 (1H, m, 5-CH$_2$), 6.21 (1H, s, NH), 7.02-7.29 (5H, m, Ar), 7.52-7.66 (3H, m, Ar), 7.80 (1H, m, H-10). 13C NMR (CDCl$_3$): δ 22.8 (C-4), 45.7 (C-5), 119.8 (C-2*, C-6*), 123.7 (C-4*), 125.1 (C-10), 128.9 (C-3*, C-5*), 130.0 (C-10a), 130.2 (2CH), 130.3 (CH), 132.9 (C-6a), 137.7 (C-1*), 153.9 (CO), 156.1 (C-1), 156.6 (C-3a). Anal. Calcd for C$_{12}$H$_{14}$N$_4$O$_3$ (322.32): C, 63.35; H, 4.38; N, 17.38. Found: C, 63.56; H, 4.48; N, 17.50.

4-Methyl-1-oxo-N-phenyl-4,5-dihydro-6H-[1,4]benzodiazepine-6-carboxamide (4e). Yield 0.65 g, 64%, mp 209-211 °C. IR (ν$_{max}$, cm$^{-1}$): 3413, 3335, 1788, 1693, 1671. 1H NMR (CDCl$_3$): δ 2.4-3.2 (2H, br.s, 4-CH$_2$), 3.3-4.2 (1H, br.s, 5-CH$_2$), 4.4-5.2 (1H, m, 5-CH$_2$), 6.21 (1H, s, NH), 7.02-7.29 (5H, m, Ar), 7.52-7.66 (3H, m, Ar), 7.80 (1H, m, H-10). 13C NMR (CDCl$_3$): δ 22.8 (C-4*), 45.7 (C-5*), 119.8 (C-2*, C-6*), 123.7 (C-4), 125.1 (C-10), 128.9 (C-3*, C-5*), 130.0 (C-10a), 130.2 (2CH), 130.3 (CH), 132.9 (C-6a), 137.7 (C-1*), 153.9 (CO), 156.1 (C-1), 156.6 (C-3a). Anal. Calcd for C$_{12}$H$_{14}$N$_4$O$_3$ (322.32): C, 63.35; H, 4.38; N, 17.38. Found: C, 63.56; H, 4.48; N, 17.50.
General procedure for preparation of 5,6-dihydro-4\(H\)-[1,2,4]oxadiazolo[4,3-\(a\)] [1,5]benzodiazepin-1-ones (4b, g-i) and 4,5-dihydro-6\(H\)-[1,2,4]oxadiazolo[4,3-\(a\)] [1,5]benzodiazepine-6-carboxamides (4f)

A solution of \(O\)-(ethoxycarbonyl)oximes 3b, f-i (0.3 mmol) in 50 mL of the mixture of dioxane-water (3:2) was heated to reflux for 4-5 h. Upon the completion of cyclization (TLC) the mixture was cooled to room temperature and was diluted with chloroform (50 mL). The organic layer was separated and aqueous phase was extracted with chloroform (2×20 mL). The combined organic solution was dried over Na\(_2\)SO\(_4\) and evaporated to dryness under reduced pressure. The white solid was recrystallized from ethyl acetate to give 4b, f-i.

4,6-Dimethyl-5,6-dihydro-4\(H\)-[1,2,4]oxadiazolo[4,3-\(a\)] [1,5]benzodiazepin-1-one (4b).

Yield 0.59 g, 85%, m p 138-140 °C. IR (\(\nu\) max, cm\(^{-1}\)): 1776. \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 1.35 (3H, d, \(3^J_{HH} = 6.8\) Hz, 4-CH\(_3\)), 2.83 (3H, s, 6-CH\(_3\)), 2.85 (1H, m, 4-CH), 3.19-3.31 (2H, m, 5-CH\(_2\)), 7.17 (1H, dd, \(4^J_{HH} = 1.4\) Hz, \(3^J_{HH} = 7.9\) Hz, H-7), 7.19 (1H, dt, \(4^J_{HH} = 1.4\) Hz, \(3^J_{HH} = 7.8\) Hz, H-9), 7.39 (1H, dt, \(4^J_{HH} = 1.4\) Hz, \(3^J_{HH} = 7.8\) Hz, H-8), 7.54 (1H, dd, \(4^J_{HH} = 1.4\) Hz, \(3^J_{HH} = 7.8\) Hz, H-10). \(^1\)C NMR (CDCl\(_3\)): \(\delta\) 11.8 (4-CH\(_3\)), 29.8 (C-4), 41.6 (6-CH\(_3\)), 64.0 (C-5), 120.6 (C-7), 123.5 (C-8), 123.9 (C-10), 126.0 (C-10a), 129.4 (C-9), 143.3 (C-6a), 156.8 (C-1), 160.4 (C-3a). Anal. Calcd for C\(_{12}\)H\(_{13}\)N\(_3\)O\(_2\) (231.25): C, 62.33; H, 5.67; N, 18.17. Found: C, 62.50; H, 5.51; N, 18.60.

5-Methyl-1-oxo-N-phenyl-4,5-dihydro-6\(H\)-[1,2,4]oxadiazolo[4,3-\(a\)] [1,5]benzodiazepine-6-carboxamide (4f).

Yield 0.73 g, 72%, m p 193-194 °C. IR (\(\nu\) max, cm\(^{-1}\)): 3369, 1789, 1775, 1669. \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 1.36 (3H, d, \(3^J_{HH} = 6.4\) Hz, 5-CH\(_3\)), 2.25 (1H, dd, \(4^J_{HH} = 11.8\) Hz, 2\(^J_{HH} = 15.0\) Hz, 4-CH\(_2\)), 3.15 (1H, dd, \(4^J_{HH} = 11.8\) Hz, 2\(^J_{HH} = 15.0\) Hz, 4-CH\(_2\)), 5.25 (1H, m, 5-CH), 5.93 (1H, s, NH), 5.93 (1H, s, 4-CH), 7.02 (1H, m, H-4), 7.19-7.26 (4H, m, Ar), 7.49 (1H, dd, \(4^J_{HH} = 1.4\) Hz, \(3^J_{HH} = 7.8\) Hz, H-7), 7.58 (1H, dt, \(4^J_{HH} = 1.4\) Hz, \(3^J_{HH} = 7.8\) Hz, H-8), 7.66 (1H, dt, \(4^J_{HH} = 1.4\) Hz, \(3^J_{HH} = 7.8\) Hz, H-9), 7.82 (1H, dd, \(4^J_{HH} = 1.5\) Hz, \(3^J_{HH} = 7.8\) Hz, H-10). \(^1\)C NMR (CDCl\(_3\)): \(\delta\) 19.6 (5-CH\(_3\)), 30.1 (C-4), 52.4 (C-5), 119.8 (C-2, C-6), 123.7 (C-4), 125.2 (C-10), 128.8 (C-3, C-5), 130.1 (C-8), 130.6 (C-9, C-6a, C-10a), 131.8 (C-7), 137.7 (C-1), 153.2 (CO), 156.0 (C-1), 156.5 (C-3a). Anal. Calcd for C\(_{18}\)H\(_{16}\)N\(_4\)O\(_3\) (336.35): C, 64.28; H, 4.79, N, 16.66. Found: C, 64.49 H, 4.66; N, 16.72.
6-Acetyl-4-methyl-5,6-dihydro-4H-[1,2,4]oxadiazolo[4,3-a][1,5]benzodiazepin-1-one (4h).
Yield 0.69 g, 89%, mp 194-196 °C. IR (ν_{max}, cm^{-1}): 1802, 1779, 1668. 1H NMR (CDCl₃): δ 1.42 (3H, d, \(^3J_{HH} = 6.7\) Hz, 4-CH₃), 1.77 (3H, s, 6-CH₃), 2.88 (1H, m, 4-CH), 3.53 (1H, dd, \(^3J_{HH} = 6.9\) Hz, 5-CH₂), 4.70 (1H, dd, \(^3J_{HH} = 12.5\) Hz, 5-CH₂), 7.38 (1H, dd, \(^4J_{HH} = 1.4\) Hz, \(^3J_{HH} = 7.8\) Hz, H-7), 7.52 (1H, dt, \(^4J_{HH} = 1.4\) Hz, \(^3J_{HH} = 7.8\) Hz, H-8), 7.61 (1H, dt, \(^4J_{HH} = 1.5\) Hz, \(^3J_{HH} = 7.8\) Hz, H-9), 7.76 (1H, dd, \(^4J_{HH} = 1.4\) Hz, \(^3J_{HH} = 7.9\) Hz, H-10). 13C NMR (CDCl₃): δ 11.4 (4-CH₃) 22.6 (6-CH₃), 29.6 (C-4), 52.1 (C-5), 124.7 (C-10), 129.3 (C-10a), 129.8 (C-8), 130.0 (C-9), 130.3 (C-7), 134.2 (C-6a), 155.9 (C-1), 159.2 (C-3a), 170.0 (6-CO). Anal. Calcd for C_{13}H_{13}N_{3}O_{3} (259.26): C, 60.22; H, 5.05; N, 16.21. Found: C, 60.02; H, 5.14; N, 16.50.

6-Acetyl-5-methyl-5,6-dihydro-4H-[1,2,4]oxadiazolo[4,3-a][1,5]benzodiazepin-1-one (4i).
Yield 0.71 g, 91%, mp 219-220 °C. IR (ν_{max}, cm^{-1}): 1797, 1778, 1664. 1H NMR (CDCl₃): δ 1.29 (3H, d, \(^3J_{HH} = 6.4\) Hz, 5-CH₃), 1.71 (3H, s, 6-CH₃), 2.25 (1H, dd, \(^3J_{HH} = 11.9\) Hz, \(^4J_{HH} = 14.9\) Hz, 4-CH₂), 3.10 (1H, dd, \(^3J_{HH} = 6.3\) Hz, \(^4J_{HH} = 14.9\) Hz, 4-CH₂), 5.36 (1H, m, 5-CH), 7.39 (1H, dd, \(^4J_{HH} = 1.4\) Hz, \(^3J_{HH} = 7.8\) Hz, H-7), 7.53 (1H, dt, \(^4J_{HH} = 1.4\) Hz, \(^3J_{HH} = 7.8\) Hz, H-8), 7.64 (1H, dt, \(^4J_{HH} = 1.5\) Hz, \(^3J_{HH} = 7.8\) Hz, H-9), 7.79 (1H, dd, \(^4J_{HH} = 1.4\) Hz, \(^3J_{HH} = 7.8\) Hz, H-10). 13C NMR (CDCl₃): δ 19.2 (5-CH₃), 22.9 (6-CH₃), 29.8 (C-4), 51.3 (C-5), 124.6 (C-10), 129.6 (C-8), 129.8 (C-10a), 130.5 (C-9), 131.7 (C-7), 132.0 (C-6a), 155.9 (C-1), 156.4 (C-3a), 170.0 (6-CO). Anal. Calcd for C_{13}H_{13}N_{3}O_{3} (259.26): C, 60.22; H, 5.05; N, 16.21. Found: C, 60.02; H, 5.14; N, 16.73.

References