Bicyclic allyltin derivatives through selective “one pot” hydrostannation - Diels-Alder reaction

Romina A. Ocampo, Sandra D. Mandolesi,* and Liliana C. Koll*

Departamento de Química and INQUISUR (UNS-CONICET), Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahía Blanca, Argentina
E-mail: lckoll@criba.edu.ar

Dedicated to the Argentinean professors Rita H. Rossi, Julio C. Podestá, Manuel González Sierra and Oscar S. Giordano in recognition of their achievements in organic chemistry and their contributions in the development of the field in our country

Abstract
In this paper we report a simple "one pot" procedure to functionalized allyltin derivatives from 1-ethynylcyclohexene. Radical addition of trineophytin hydride gives quantitatively to (Z,E)-1-(2-trineophylstannylvinyl)cyclohexene, a conjugated dienyl-stannane that, via a [4+2] cycloaddition reaction (Diels-Alder) with activated dienophiles, affords substituted bicyclic unsaturated products with specific stereochemistry and a trialkylstannyl group in allylic position. The Stille reaction of the allyltin compound enables the synthesis of aryl substituted bicyclic compounds in moderate to good yields (48-85%).

Keywords: Bicyclic allyltin, hydrostannation, hydrostannylation, Diels-Alder reaction, Stille coupling

Introduction
The Diels-Alder reaction is one of the most commonly used organic reactions to construct, in a regio- and stereocontrolled way, a six membered ring with up to four stereogenic centers. The widespread utility of the reaction rests on its ability to form otherwise difficult to access molecules such as bridged bicyclic compounds and also more complex structures due to its potential to form carbon-carbon, carbon-heteroatom and heteroatom-heteroatom bonds. The synthesis of stereodefined conjugated dienylstannanes is an area of interest as they are very useful synthetic intermediates. We are interested in developing a fast route to obtain these types of precursors in order to study them as dienes in a “one pot” Diels-Alder reaction. Furthermore, allyltin reagents are very important in organic and asymmetric synthesis, as shown, for instance,
in reactions of allylstannanes with aldehydes in the presence of chiral non-racemic ligands coordinated with Lewis acids.\(^3\) We now report the synthesis of a variety of functionalized compounds containing allyltin structures via a “one pot” hydrostannation Diels-Alder reaction. These compounds could be suitable building blocks of non-steroidal compounds which are selective modulators (\textit{i.e.}, agonists and antagonists) of a steroid receptor, specifically, the glucocorticoid receptor. Such receptors are useful to treat diseases such as obesity, diabetes, inflammation and others.\(^4\) Thus, the possibility of synthesizing such precursors through a “one pot” protocol was the main target of this study. The allyltin compounds obtained are being tested in palladium catalyzed C-C Stille coupling reactions with the aim to obtain tin free non-steroidal analogs.

Results and Discussion

Initially the hydrostannation of 1-ethynylcyclohexene (1) was performed with the easy to handle and commercially available tri-\(n\)-butyltin hydride under three different reaction conditions: Method A: free radical conditions and photochemical initiation, nitrogen atmosphere, azobisisobutyronitrile (AIBN) (0.01 equiv), without solvent, at 75 °C; Method B: free radical conditions using ultrasound,\(^5\) nitrogen atmosphere, r.t., AIBN (0.01 equiv), without solvent and Method C: under catalyzed conditions bis(triphenylphosphine)palladium (II) chloride (2 mol%), r.t. in THF (Scheme 1).

\[
\begin{align*}
\text{Method A, B or C} & : N_2 / \text{AIBN} / 75 \degree C \\
\text{Method A: } & \text{ultrasound / AIBN} \\
\text{Method C: } & \text{Pd(PPh}_3)_2\text{Cl}_2 / \text{THF / R.T.}
\end{align*}
\]

Scheme 1. Addition of tri-\(n\)-butyltin hydride to 1-ethynylcyclohexene 1.

The \(^{119}\)Sn NMR spectra of the crude products resulting from these additions clearly showed that mixtures of at least three diyenyltin adducts were obtained. In previous studies with mono- and disubstituted alkynes,\(^6\) we demonstrated that it was possible to improve the selectivity of this reaction using organotin hydrides with bulky organic ligands. In view of the poor regio- and stereoselectivity of the present hydrostannylation (Scheme 1), we considered the alternative addition of the more sterically demanding trineophyltin hydride 2 (neophyl –Neph- is 2-methyl-2-phenylpropyl) to enyne 1 under similar reaction conditions. As shown in Scheme 2, the results obtained were substantially different. In the case of Methods A and B under free radical conditions, [(1Z)-2-cyclohexenylvinyl]trineophylstannane 3 resulting from an \textit{anti} attack, was
the only product obtained in quantitative yield after 1 h (Method A) and 40 min (Method B) of
reaction, respectively.

![Scheme 2](image-url)

Scheme 2. Addition of trineophylstannyl hydride 2 to 1-ethynylcyclohexene 1.

The geometry of compound 3 was assigned on the basis of the large $^3J_{(Sn,H)}$ coupling constant of 151.3 Hz that indicated the existence of *trans* H-C-C-Sn linkages. The absence of the signal corresponding to a terminal vinyl methylene in the 13C NMR spectra supported that the tin atom was not attached to the cyclohexenyl moiety. The structure was confirmed by other 1H, 13C and 119Sn NMR data (see Experimental Section). When the reaction was performed under palladium catalyzed conditions and after 45 min (Method C), a mixture of [(1E)-2-cyclohexenylvinyl]-trineophylstannane 4 and (1-cyclohexenylvinyl)trineophylstannane 5 (4:5, 2.3:1) was obtained. The ratio of isomers was determined through the corresponding 119Sn NMR spectrum of the crude product. These adducts were the result of the corresponding *syn* addition of the trineophyltin hydride. No addition to the double bond of enyne 1 was observed in any case. Although the mixture of regioisomers 4 and 5 could not be separated, we were able to obtain enriched mixtures from which useful NMR data could be obtained. The stereochemistry of 4 and 5 was assigned taking into account that the $^3J_{(Sn,H)}$ coupling constant value of 69.8 Hz extracted from the 1H NMR spectrum lies in the range 65-85 Hz, and indicated a *cis* arrangement between the proton attached to the same vinyl carbon as the cyclohexenyl moiety and the stannyl group in stereoisomer 4. Furthermore, the $^3J_{(H,H)}$ of 19.1 Hz indicated *trans* H-C-C-H linkages around the vinyl group in the same adduct. In the case of compound 5, the $^2J_{(Sn,C)}$ coupling constant of 28.2 Hz corresponded to a CH$_2$ at 123.41 ppm in the 13C NMR spectra together with $^2J_{(H,H)}$ and $^3J_{(Sn,H)}$ coupling constants values of 2.3 Hz and 67.5 Hz, respectively, confirmed both the existence of a terminal sp2 carbon and cyclohexenyl- and trineophyltin groups attached to the same vinyl carbon. Other 1H, 13C and 119Sn NMR data also confirmed the assigned structures (see Experimental Section).
As we were looking for the best conditions for a “one pot” hydrostannation Diels-Alder reaction, we selected the addition of Neph$_3$SnH to 1 using Method B (Scheme 3).

\[
\text{C}_6\text{H}_4\text{C}≡\text{C} + \text{Neph}_3\text{SnH} \rightarrow \text{C}_6\text{H}_4\text{C}_2\text{H}_5\text{SnNeph}_3
\]

Reagents and conditions: i) Method B: ultrasound, AIBN (100%); ii) Method D: CH$_2$Cl$_2$, AlCl$_3$, -78 °C; Method E: PhH, hydroquinone, 80 °C; Method F: PhH, hydroquinone, 40 °C, ultrasound.

Since the trialkylstannyl group was known to have a small electron-donating inductive effect when attached to a dienic sp2 carbon atom, it could react readily with electron-poor dienophiles. The adducts obtained in these reactions should reflect the stereochemistry of the starting compounds. So, without further purification, the dienylstannane 3 was used as the conjugated diene precursor for the Diels-Alder reaction performed under three different experimental conditions with several activated dienophiles: Method D: methylene dichloride, aluminum trichloride, -78 °C; Method E: benzene, hydroquinone (as polymerization inhibitor), 80 °C and Method F: benzene, hydroquinone, 40 °C, ultrasound (Table 1).

The formation of the “ortho or meta” adducts in the Diels-Alder reaction in most cases can be explained in terms of Frontier Orbital Theory and it was possible to predict the regiochemistry of these [4n + 2] cycloadditions. Thus, the strongest interaction will be between the centers on the frontier orbitals having the largest orbital coefficients, which are, in this case, the HOMO of the diene with an electron releasing group (ERG) at C$_1$ that reacts with the LUMO of the dienophile with an electron withdrawing group (EWG). The most favored regioisomer that should be expected is the “ortho” adduct (Scheme 4, a).

However, when the diene was substituted at C$_1$ with a weak ERG such as the trieneophyl-stannyl group, its contribution to the distortion effect on the size of the orbital was very small so the coefficients of C$_1$ and C$_4$ were expected to be very similar. Because of this, in the determination of the regiochemistry, the predominant effect was steric and as such the preferred product was expected be the “meta” adduct (Scheme 4, b). This structural hypothesis was confirmed through the spectroscopic analyses of the products obtained in the corresponding “one pot” reactions.
ERG -electron releasing group- = -SnNeph₃

Scheme 4. Relative coefficients of interacting frontier orbitals.

Thus, the reaction of diene 3 and methyl acrylate 6 (entry 1, Table 1), gave exclusively methyl-4-trineophylstannylbicyclo[4.4.0]dec-5-ene-2-carboxylate 14 in 92% yield (Method E) and 75% yield in the presence of Lewis acid at -78 °C (Method D). Only starting material was recovered when the ultrasound was used (Method F). The absence of Sn, C coupling constants between the tin atom and the carbonyl group and the signals at δ 24.41 [²J(Sn,C) = 15.2 Hz] corresponding to a methylene group (C₃), clearly showed that 14 was the “meta” adduct together with the observed ³J(Sn-C₄-C₃-C₂) = 11.2 Hz, that, according to previous work and the graph of the Karplus equation, corresponded to a dihedral angle close to 110° which supported a trans relation between the methoxycarbonyl group and the tin moiety. As expected, 4-trineophylstannyln-1,3,3a,4,6,7,8,9,9a,9b-decahydrobenzo[e]isobenzofuran-1,3-dione 15 was the only cycloaddition product in the reaction between 3 and the symmetric maleic anhydride 7 (entry 2, Table 1). The trans geometric relationship between the tin atom and the nearest carbonyl group (C₃) was determined through the ³J(Sn-C₄-C₃a-C₃=O) coupling constant value of 64.6 Hz extracted from ¹³C NMR spectra that gave a 150-180° dihedral angle between C₄-Sn bond and C₃=O group. This hypothesis was confirmed by considering the observed ³J(H,H) coupling constant value between H-3a and H-9b which was about 2.3 Hz consistent with a cis conformation. Once again, the highest yield of 95% for adduct 15 occurred under the experimental conditions given by Method E. A similar analysis allowed us to determine the structure of 8-trineophylstannyltricyclo[8.4.0.0²,7]tetradea-4,9-diene-3,6-dione 16, obtained from the reaction between 3 and p-benzoquinone 8 (entry 3, Table 1).
Table 1. Diels-Alder reactions between adduct 3 and activated dienophiles 6–12

<table>
<thead>
<tr>
<th>Entry</th>
<th>Dienophile</th>
<th>Method a (time, h)</th>
<th>Yield (%) b</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>D / (48)</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E / (22)</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F / (22)</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>D / (48)</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>E / (10)</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>E / (20)</td>
<td>70 d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F / (72)</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>E / (20)</td>
<td>20 d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F / (72)</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>E / (20)</td>
<td>c</td>
<td>----------</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>E / (20)</td>
<td>c</td>
<td>----------</td>
</tr>
</tbody>
</table>

a Method D: CH₂Cl₂, AlCl₃, -78 ºC; Method E: PhH, hydroquinone, 80 ºC; Method F: PhH, hydroquinone, 40 ºC, ultrasound. b After chromatographic purification. c Starting material was recovered. d As a mixture of two regioisomers.

The value of $^3J_{(Sn,C)} = 53.8$ Hz among the trineophytin group attached to C₈ and the carbonyl group (C₆) indicated a dihedral angle close to 150º. Following the same analysis as before, $^3J_{(H,H)}$ coupling constant value between H₂ and H₇ of 3.0 Hz supported a cis conformation.
In this case, both Methods E and F gave 16 in 91 and 87% yield, respectively. When the reaction was performed using acrylonitrile as the starting dienophile 9 (entry 4, Table 1), and benzene and hydroquinone were used (Method E) the formation of two adducts was observed in a 7.3:1 ratio, respectively according to 119Sn spectra of the crude product. Only starting material was recovered under the other two reaction conditions. Column chromatography purification was very difficult because of the very similar interaction of both adducts with silica gel or alumina.

However, 4-trineophylstannylbicyclo[4.4.0]dec-5-en-2-yl cyanide 17 could be isolated and for 17′ characterization of an enriched mixture was used. Analysis of the 1H and 13C NMR spectra showed that the “meta” adduct 17 was the predominant regioisomer and the “ortho” adduct, 4-trineophylstannylbicyclo[4.4.0]dec-5-en-3-yl cyanide 17′ was the minor one. The conclusions about each structure were based on the fact that there was a CH$_2$ signal at 34.13 ppm with $^2J_{(Sn,C)}$ of 10.3 Hz coupling constant value in the case of 17 and a CH signal at 39.26 ppm with $^2J_{(Sn,C)}$ of 11.2 Hz for 17′. Furthermore, there was a $^3J_{(Sn-C-C-CN)}$ of 24.7 Hz that was consistent with a dihedral angle of about 120º indicating a trans relation between the nitrile group and the tin moiety in compound 17′. The absence of any coupling constant between the same groups in 17, supported the meta arrangement proposed for this adduct. Nevertheless, α-substituted dienophiles gave very different results. Only a 20% yield was observed in the cycloaddition reaction when methyl 2-methylacrilate was used 10 (entry 5, Table 1). Under the conditions fixed by Method E (benzene/hydroquinone), a mixture of two regioisomers, methyl 2-methyl-4-trineophylstannylbicyclo [4.4.0]dec-5-ene-2-carboxylate 18 and methyl 3-methyl-4-trineophylstannylbicyclo[4.4.0]dec-5-ene-3-carboxylate 18′ were obtained in a 3 : 1 ratio, respectively according to the 119Sn NMR spectrum of the crude product. No reaction was detected in other cases (Method D and F, see Table 1). Purification by column chromatography on silica-gel 60 only gave enriched fractions of each adduct and according to their spectral data (1H and 13C) we were able to analyze their possible structures. The absence of the 3J coupling constant between the trineophyltin group and the carbonyl group in 18 possibly indicated that, once again, the major product was the “meta” adduct. While, the observed $^3J_{(Sn,C=O)} = 12.3$ Hz, corresponding to a dihedral angle close to 110º, supported a trans relation between the carboximethyl group and the tin moiet in the “ortho” adduct 18′.

Comparing methyl acrylate 6 with methyl-2-methylacrylate 10, the methyl group in C$_2$ seems to change dramatically the yield of the reaction (entries 1 and 5, Table 1) probably due to both steric hindrance and the weak electron-releasing capacity of this group that diminished the electron-withdrawing effect of the carbonyl moiety. It is important to note that no cycloaddition product at all was obtained in the reactions conducted with dienophiles 11 and 12 (entry 6 and 7, Table 1). Presumably and in spite of the conjugating effect of the phenyl group, there was an important steric factor that prevented the reaction.

Taking into account that allyltin compounds can be used as Stille coupling substrates, 9 we tested the cited reaction with compound 14 and 16 and three substituted aryl halides: 4-ido-anisole, 2-bromopyridine and 2-bromo-6-methylquinoline (Scheme 5) according to previous experimental reaction conditions. 10 New compounds 19-24 were purified by column
chromatography and obtained in moderate to good yields (48-85%). The stationary phase (neutral alumina) was previously treated with with 10% KF to retain the trineophyltinhalides formed in the reaction. From the NMR spectra of these compounds, it seemed that there was absolute retention of configuration in the carbon attached to the new aryl moiety.

Scheme 5. Stille coupling between 14 and 16 with some substituted aryl halides.

From these studies, we showed that, in the presence of suitably activated dienophiles, it was possible to carry out “one-pot hydrostannation Diels-Alder” reactions to obtain allylstannyl compounds in very high yields that were easily purified by column chromatography. These allylstannyl substrates are important precursor intermediates for Stille coupling reactions leading to bicyclic aryl compounds. In view of these preliminary results, we intend to optimize the method (improve yields and reaction time) with the aim of generalizing the Stille coupling for substrates 14 and 16.

Experimental Section

General. All reactions were carried out under argon or nitrogen atmosphere. 1H, 13C, COSY and 119Sn NMR spectra were recorded on a Bruker ARX 300 Multinuclear instrument and calibrated
by using signals from solvents referenced to SiMe₄ (¹H, ¹³C, COSY) and with respect to Me₄Sn
in the case of ¹¹⁹Sn-NMR spectra and chemical shifts are reported in ppm. Infrared spectra were
recorded with a Nicolet Nexus FT spectrometer. The reactions under ultrasonic conditions were
performed in an ULTRASONIC 104X bath. Elemental analyses (C, H) were performed in an
EXETER CE-440 instrument at UMYMFOR (Argentina). High-resolution mass spectra (HRMS)
were recorded on a BRUKER microTOF-Q II spectrometer (HR-ESI-MS) at UMYMFOR
(Argentina). Melting points were determined with a Koefler Hot-Stage apparatus and are
uncorrected. All the solvents and reagents were analytical grade. Solvents were dried using
standard procedures. Trineophylltin hydride was prepared as described previously.¹¹

Addition of trineophylltin hydride (2) to 1-ethynylcyclohexene (1) under radical conditions.
General synthetic procedure. Synthesis of (Z)-2-(1-cyclohexenyl)-1-ethenyl(trineophyl)
stannane (3)

Method A. 1-Ethynylcyclohexene 1, (0.405 mL, 2.5 mmol) was treated for 1 h. with
trineophylltin hydride 2 (1.305 g, 2.5 mmol) under nitrogen atmosphere at 75 ºC and with AIBN
as a catalyst (this optimal time of reaction was monitored by taking samples and observing the
disappearance of the Sn-H absorption by IR and products formation by ¹H NMR). The ¹¹⁹Sn
NMR spectrum of the crude product showed that only adduct 3 was obtained in quantitative
yield as a colorless oil that was used without further purification. ¹H NMR (300 MHz, CDCl₃) δH
1.35 (s, 6H), 1.51 (s, 18H), 1.80-1.97 (m, 4H), 2.27 (m, 2H), 2.35 (m, 2H), 5.57 (d, 1H, ³J(H,H)
13.4 Hz), 5.77 (m, 1H), 6.91 (d, 1H, ³J(H,H) 13.5 Hz, ³J(Sn,H) 151.3 Hz), 7.61-7.36 (m, 15H); ¹³C
NMR (75.4 MHz, CDCl₃) δC 22.7, 23.1, 26.0, 28.6, 33.1 (¹J(Sn,C) 332.2 Hz), . 33.5 (³J(Sn,C) 34.0
Hz), . 38.7 (²J(Sn,C) 18.8 Hz), 125.3, 125.8 (²J(Sn,C) 7.10 Hz), 125.9, 128.5, 130.3 (¹J(Sn,C) 372.2
Hz), 139.9 (³J(Sn,C) 28.2 Hz), 148.7, 152.1 (³J(Sn,C) 24.1 Hz); ¹¹⁹Sn NMR (111.8 MHz, CDCl₃): δSn
-89.69 ppm; HR-MS (EI): calcd for C₃₈H₅₀Sn 625.5136, found 625.5139. Anal. Calcd for
C₃₈H₅₀Sn: C, 72.9; H, 8.4. Found: C, 72.8; H, 8.3%.

Method B. 1-Ethynylcyclohexene 1, (0.405 mL, 2.5 mmol), was treated with trineophylltin
hydride 2 (1.305 g, 2.5 mmol) and AIBN as a catalyst under argon atmosphere in an ultrasonic
bath during 40 min. The reaction was monitored as mentioned above. The ¹¹⁹Sn NMR spectrum
of the crude product showed that only adduct 3 was obtained in quantitative yield as a colorless
oil that was used without further purification.

Addition of trineophyllstannyl hydride (2) to 1-ethynylcyclohexene (1) catalyzed by
bis(triphenylphosphine)palladium(II) chloride. Synthesis of (E)-2-(1-cyclohexenyl)-1-ethenyl(trineophyll)stannane (4) and 1-(1-cyclohexenyl)vinyl(trineophyll)stannane (5)

Method C. To a solution of 1-ethynylcyclohexene 1 (0.405 mL, 2.5 mmol) and
bis(triphenylphosphine)palladium(II) chloride (0.07 g; 0.05 mmol) in dry THF (7 mL) under
nitrogen atmosphere was added trineophyllstannyl hydride 2, (1.305 g; 2.5 mmol), and the
mixture was stirred at room temperature during 45 min. Dry hexane (10 mL) was added and
cooled over 10 min at 0 ºC. The resultant residue of catalyst was filtered through porous plate
and the solvent was distilled off under reduced pressure. The ¹¹⁹Sn NMR spectrum showed two
signals corresponding to adducts 4 and 5 in a ratio 7:3, respectively. The mixture of isomers could not be separated. However, enriched mixtures of 4 and 5 obtained by column chromatography on silica gel 60 eluted with 9:1 (hexane/Et2O) were used for structural analysis.

Compound (4). 1H NMR (300.0 MHz, CDCl3) δH 1.10 (s, 2H, $^2J_{(\text{Sn,H})}$ 12.2 Hz), 1.29 (s, 18H), 2.05-1.96 (m, 4H), 2.27-2.06 (m, 4H), 5.50 (d, 1H, $^3J_{(\text{Sn,H})}$ 76.4 Hz), 5.70 (t, 1H, $^3J_{(\text{H,H})}$ 7.0 Hz), 6.28 (d, 1H, $^3J_{(\text{H,H})}$ 19.1 Hz, $^3J_{(\text{Sn,H})}$ 69.8 Hz), 7.61-7.06 (m, 15H); 13C NMR (75.4 MHz, CDCl3) δC 23.0, 23.2, 24.3, 26.3, 32.3 ($^1J_{(\text{Sn,C})}$ 321.4 Hz), 33.5 ($^3J_{(\text{Sn,C})}$ 34.2 Hz), 38.6 ($^2J_{(\text{Sn,C})}$ 17.6 Hz), 125.8, 126.0, 127.3 ($^1J_{(\text{Sn,C})}$ 411.6 Hz), 129.2, 128.4, 148.3 ($^2J_{(\text{Sn,C})}$ 11.2 Hz), 152.1 ($^3J_{(\text{Sn,C})}$ 24.8 Hz), 159.0 ($^3J_{(\text{Sn,C})}$ 74.0 Hz); 119Sn NMR (111.8 MHz, CDCl3): δSn -80.37 ppm.

Compound (5). 1H NMR (300.0 MHz, CDCl3) δH 1.16 (s, 2H, $^2J_{(\text{Sn,H})}$ 13.4 Hz), 1.27 (s, 18H), 2.05-1.96 (m, 4H), 2.27-2.06 (m, 4H), 5.18 (d, 1H, $^2J_{(\text{H,H})}$ 2.3 Hz, $^3J_{(\text{Sn,H})}$ 67.5 Hz), 5.35 (t, 1H, $^3J_{(\text{H,H})}$ 8.0 Hz), 5.76 (d, 1H, $^2J_{(\text{H,H})}$ 2.0 Hz), 7.61-7.06 (m, 15H); 13C NMR (75.4 MHz, CDCl3) δC 23.0, 23.4, 26.1, 27.9 ($^3J_{(\text{Sn,C})}$ 17.4 Hz), 31.9 ($^1J_{(\text{Sn,C})}$ 336.0 Hz), 33.5 ($^3J_{(\text{Sn,C})}$ 34.4 Hz), 38.5 ($^2J_{(\text{Sn,C})}$ 18.6 Hz), 123.4 ($^2J_{(\text{Sn,C})}$ 28.2 Hz), 125.8, 125.9, 127.0 ($^3J_{(\text{Sn,C})}$ 26.9 Hz), 128.4, 138.2 ($^2J_{(\text{Sn,C})}$ 34.4 Hz), 141.6 ($^1J_{(\text{Sn,C})}$ 310.4 Hz), 151.9 ($^3J_{(\text{Sn,C})}$ 22.2 Hz); 119Sn NMR (111.8 MHz, CDCl3): δSn -81.50 ppm.

“One pot” cycloaddition reaction between 3 and activated dienophiles. General synthetic procedure. Synthesis of 4-trineophylstannyl-1,3,3a,4,6,7,8,9,9a,9b-decahydrobenzo[e]isobenzofuran-1,3-dione (15)

Method D. In the same flask where stannyl diene 3 (1.56 g; 2.5 mmol) was obtained as mentioned above, dry dichloromethane (4.5 mL) was added and the solution was cooled to -78°C in argon atmosphere. Aluminum trichloride (0.07 g; 0.5 mmol) and maleic anhydride (0.25 g; 2.5 mmol) were added. The resulting mixture was allowed to warm to 0°C over a period of 1 h and left stirring 48 h. at room temperature. Then, the reaction mixture was poured into water (10 mL) and extracted with dichloromethane (3 × 15 mL). The combined organic extracts were dried (MgSO₄) and the solvent was distilled off under reduced pressure. The crude product was purified by column chromatography with silica-gel 60 and pure compound 15 eluted with 95:5 (hexane/Et2O) as a clear yellow oil. (1.75 mmol; 70%). 1H NMR (300.0 MHz, CDCl3) δH 0.94 (s, 6H, $^2J_{(\text{Sn,H})}$ 30.7 Hz), 1.14 (s, 18H), 1.68 (dd, 1H, $^3J_{(\text{H,H})}$ 8.7 Hz), 1.78-1.55 (m, 6H), 1.92 (td, 2H, $^3J_{(\text{H,H})}$ 12.4 Hz, $^3J_{(\text{H,H})}$ 3.6 Hz), 2.08 (m, 1H), 2.10 (dd, 1H, $^3J_{(\text{H,H})}$ 8.6Hz, $^3J_{(\text{H,H})}$ 2.3 Hz), 2.73 (dd, 1H, $^3J_{(\text{H,H})}$ 8.7Hz, $^3J_{(\text{H,H})}$ 2.3Hz), 5.00 (d, 1H, $^3J_{(\text{H,H})}$ 5.4 Hz, $^3J_{(\text{Sn,H})}$ 17.8 Hz), 7.36-6.93 (m, 15H); 13C NMR (75.4 MHz, CDCl3) δC 25.6, 26.4, 30.5, 30.6 ($^1J_{(\text{Sn,C})}$ 298.1 Hz), 32.4 ($^1J_{(\text{Sn,C})}$ 233.0 Hz), 32.7, 32.8 ($^3J_{(\text{Sn,C})}$ 40.4 Hz), 35.2, 37.1 ($^2J_{(\text{Sn,C})}$ 19.4 Hz), 40.3 ($^2J_{(\text{Sn,C})}$ 13.6 Hz), 42.5 ($^2J_{(\text{Sn,C})}$ 46.6 Hz), 120.3 ($^2J_{(\text{Sn,C})}$ 33.5 Hz), 124.2, 125.0, 127.4, 131.6 ($^3J_{(\text{Sn,C})}$ 42.3 Hz), 149.9 ($^3J_{(\text{Sn,C})}$ 14.1 Hz), 170.6, 173.3 ($^3J_{(\text{Sn,C})}$ 64.6 Hz); 119Sn NMR (111.8 MHz, CDCl3): δSn -32.15 ppm; HR-MS (EI): calcd for C₄₂H₅₂O₃Sn 723.5782, found 723.5789. Anal. Calcd for C₄₂H₅₂O₃Sn: C, 69.7; H, 7.5%. Found: C, 69.7; H, 7.6%.

Method E. Over a solution of 3 (1.56 g; 2.5 mmol) and dry benzene (4.5 mL) in argon atmosphere, p-hydroquinone (20 mg, 0.18 mmol) and maleic anhydride (0.25 g; 2.5 mmol) were
added. The solution was heated at 80 °C for 20 h, the solvent was removed in vacuo and the product was isolated by column chromatography with neutral aluminum oxide and compound 15 eluted with 95:5 (hexane/Et2O), 2.38 mmol; 95%.

Method F. Over a solution of 3 (1.56 g; 2.5 mmol) and dry benzene (4.5 mL) in argon atmosphere in an ultrasonic bath, p-hydroquinone (20 mg, 0.18 mmol) and maleic anhydride (0.25 g; 2.5 mmol) were added. The temperature was maintained below 40 °C for 12 h. The solvent was distilled off under reduced pressure and product 15 was isolated as mentioned above (0.75 mmol; 30%).

Methyl-4-trineophylstannylbicyclo[4.4.0]dec-5-ene-2-carboxylate (14). Yellowish oil. 1H NMR (300.0 MHz, CDCl3) δH 0.90 (s, 6H, 3J(Sn,H) 37.5 Hz), 1.32-1.29 (m, 2H), 1.10 (s, 18H), 1.37-1.30 (m, 2H), 1.78-1.59 (m, 3H), 1.87 (dd, 2H, 3J(H,H) 5.2 Hz, 3J(H,H) 5.3 Hz), 1.93 (t, 2H, 3J(H,H) 12.4 Hz), 2.23 (dt, 1H, 3J(H,H) 2.8 Hz, 3J(H,H) 5.7 Hz), 2.43 (dt, 1H, 3J(H,H) 2.8 Hz, 3J(H,H) 5.7 Hz), 3.62 (s, 3H), 4.97 (d, 1H, 3J(H,H) 5.6 Hz, 3J(Sn,H) 49.5 Hz), 7.25-6.98 (m, 15H); 13C NMR (75.4 MHz, CDCl3) δC 24.4 (2J(Sn,C) 15.2 Hz), 25.9, 27.31, 27.8 (1J(Sn,C) 369.2 Hz), 34.3, 37.1 (2J(Sn,C) 18.2 Hz), 38.5 (3J(Sn,C) 12.0 Hz), 42.6 (3J(Sn,C) 11.2 Hz), 51.5, 122.5 (3J(Sn,C) 37.6 Hz), 124.4, 124.4, 127.1, 135.3 (3J(Sn,C) 46.7 Hz), 150.3 (3J(Sn,C) 17.6 Hz), 175.4, 119Sn NMR (111.8 MHz, CDCl3): δSn -46.25 ppm. HR-MS (EI): calcd for C42H56O2Sn 711.6063, found 711.6059. Anal. Calcd for C42H56O2Sn: C, 70.8; H, 8.3. Found: C, 70.6; H, 8.2%.

8-Trineophylstannyltricyclo[8.4.0.02,7]tetradeca-4,9-diene-3,6-dione (16). Yellow oil. 1H NMR (300.0 MHz, CDCl3) δH 0.99 (s, 6H, 3J(Sn,H) 30.0 Hz), 1.18 (s, 18H), 1.68-1.63 (m, 4H), 1.95 (t, 2H, 3J(H,H) 10.8 Hz), 2.22 (d, 1H, 3J(H,H) 5.9 Hz), 2.34 (dd, 1H, 3J(H,H) 6.8 Hz, 3J(H,H) 3.1 Hz), 5.13 (d, 1H, 3J(H,H) 10.3 Hz), 6.49 (d, 1H, 3J(H,H) 10.3 Hz), 6.59 (d, 1H, 3J(H,H) 10.3 Hz), 7.42-6.97 (m, 15H); 13C NMR (75.4 MHz, CDCl3) δC 24.1 (1J(Sn,C) 267.3 Hz), 27.2, 27.9, 29.3, 31.5 (1J(Sn,C) 293.3 Hz), 34.1 (3J(Sn,C) 36.7 Hz), 37.1, 38.4 (2J(Sn,C) 18.5 Hz), 40.1 (2J(Sn,C) 12.3 Hz), 47.7, 51.0 (3J(Sn,C) 16.4 Hz), 125.7, 126.2, 128.8, 121.7 (2J(Sn,C) 36.5 Hz), 133.9 (3J(Sn,C) 44.2 Hz), 140.6, 142.1, 151.3 (3J(Sn,C) 15.0 Hz), 199.6 (3J(Sn,C) 53.8 Hz), 202.7; 119Sn NMR (111.8 MHz, CDCl3): δSn -39.77 ppm. HR-MS (EI): calcd for C44H54O2Sn 733.6083, found 733.6072. Anal. Calcd for C44H54O2Sn: C, 72.0; H, 7.7. Found: C, 70.6; H, 8.2%.

4-Trineophylstannylicarbonyl[4.4.0]dec-5-en-2-yl cyanide (17). Yellowish oil. 1H NMR (300.0 MHz, CDCl3) δH 0.90 (s, 6H, 2J(Sn,H) 43.1 Hz), 1.10 (s, 18H), 1.66-1.60 (m, 2H), 1.52-1.58 (m, 2H), 1.70-1.68 (m, 2H), 1.82-1.71 (m, 4H), 2.14 (dd, 2H, 3J(H,H) 16.0 Hz, 3J(H,H) 14.5 Hz), 2.64 (dt, 1H, 3J(H,H) 4.8 Hz, 3J(H,H) 11.0 Hz), 5.03 (d, 1H, 3J(H,H) 28.6 Hz, 3J(H,H) 3.5 Hz), 7.26-6.99 (m, 15H); 13C NMR (75.4 MHz, CDCl3) δC 24.8, 25.9, 27.5, 29.5 (1J(Sn,C) 300.8 Hz), 31.2 (1J(Sn,C) 246.4 Hz), 30.4, 32.0, 32.4 (3J(Sn,C) 35.0 Hz), 32.5 (3J(Sn,C) 35.0 Hz), 34.1 (2J(Sn,C) 10.3 Hz), 36.8 (3J(Sn,C) 11.8 Hz), 36.9 (3J(Sn,C) 18.2 Hz), 119.9, 123.2 (3J(Sn,C) 33.2 Hz), 124.3, 124.6, 127.2, 132.2 (3J(Sn,C) 43.2 Hz), 150.1 (3J(Sn,C) 17.2 Hz); 119Sn NMR (111.8 MHz, CDCl3): δSn -39.77 ppm. HR-MS (EI): calcd for C41H53NSn 679.1538, found 679.1525. Anal. Calcd for C41H53NSn: C, 72.4; H, 7.9. Found: C, 72.3; H, 7.7%.
4-Trineophylstannylbicyclo[4.4.0]dec-5-en-3-yl cyanide (17). \(^1H \) NMR (300.0 MHz, CDCl_3) \(\delta_H 0.87 (s, 6H, 2J_{(Sn,H)} 42.3 Hz), 1.11 (s, 18H), 1.42-1.22 (m, 4H), 1.78-1.56 (m, 3H), 2.29-1.89 (m, 4H), 2.64 (tt, 1H, 3J_{(H,H)} 6.0Hz, 3J_{(H,H)} 11.4 Hz), 2.86 (dt, 1H, 3J_{(H,H)} 6.4 Hz, 3J_{(H,H)} 12.8 Hz), 4.99 (d, 1H, 3J_{(Sn,H)} 36.2 Hz, 3J_{(H,H)} 3.4 Hz), 7.41-6.86 (m, 15H); \(^{13}C \) NMR (75.4 MHz, CDCl_3) \(\delta_C 25.4, 26.7, 28.4, 29.4 (1J_{(Sn,C)} 328.9 Hz), 32.4 (3J_{(Sn,C)} 34.6 Hz), 32.5 (3J_{(Sn,C)} 11.7 Hz), 34.7 (3J_{(Sn,C)} 11.7 Hz), 34.8 (3J_{(Sn,C)} 239.0 Hz), 35.0, 36.9 (3J_{(Sn,C)} 19.4 Hz), 39.3 (3J_{(Sn,C)} 11.2 Hz), 39.6, 119.8 (3J_{(Sn,C)} 24.7 Hz), 122.8 (3J_{(Sn,C)} 31.7 Hz), 125.2, 125.5, 128.0, 134.4 (3J_{(Sn,C)} 41.1 Hz), 151.0 (3J_{(Sn,C)} 16.4 Hz); \(^{119}Sn \) NMR (111.8 MHz, CDCl_3): \(\delta_{Sn} -37.72 ppm. \)

Methyl-2-methyl-4-trineophylstannylbicyclo[4.4.0]dec-5-ene-2-carboxilate (18). \(^1H \) NMR (300.0 MHz, CDCl_3) \(\delta_H 0.88 (s, 6H), 1.04 (m, 1H), 1.08 (s, 18H), 1.32 (d, 2H), 1.49 (s, 3H), 1.63-1.42 (m, 6H), 1.98 (t, 2H, 3J_{(H,H)} 11.6 Hz), 2.16 (t, 1H, 3J_{(H,H)} 13.9 Hz), 3.52 (s, 3H), 5.15 (d, 1H, 3J_{(H,H)} 6.1 Hz, 3J_{(Sn,H)} 36.1 Hz), 7.25-7.13 (m, 15H); \(^{13}C \) NMR (75.4 MHz, CDCl_3) \(\delta_C 24.3, 24.9, 25.8, 26.7, 29.2 (1J_{(Sn,C)} 292.9 Hz), 33.5 (3J_{(Sn,C)} 34.6 Hz), 34.3, 36.9 (3J_{(Sn,C)} 18.2 Hz), 37.1 (2J_{(Sn,C)} 10.6 Hz), 41.4, 41.5 (3J_{(Sn,C)} 245.9 Hz), 44.3 (3J_{(Sn,C)} 16.9 Hz), 51.7, 122.4 (3J_{(Sn,C)} 34.1 Hz), 124.4, 124.5, 127.1, 133.5, 150.5 (3J_{(Sn,C)} 18.6 Hz), 174.7; \(^{119}Sn \) NMR (111.8 MHz, CDCl_3): \(\delta_{Sn} -36.43 ppm. \)

Methyl-3-methyl-4-trineophylstannylbicyclo[4.4.0]dec-5-ene-3-carboxilate (18´). \(^1H \) NMR (300.0 MHz, CDCl_3) \(\delta_H 0.85 (s, 6H), 1.07 (m, 2H), 1.08 (s, 18H), 1.49 (s, 3H), 1.63-1.52 (m, 6H), 1.98 (t, 2H, 3J_{(H,H)} 11.6 Hz), 2.40 (d, 1H, 3J_{(H,H)} 10.0 Hz), 3.59 (s, 3H), 4.93 (d, 1H, 3J_{(H,H)} 5.7 Hz, 3J_{(Sn,H)} 37.0 Hz), 7.12-6.96 (m, 15H); \(^{13}C \) NMR (75.4 MHz, CDCl_3) \(\delta_C 23.4, 25.6, 26.0, 27.3, 30.1 (3J_{(Sn,C)} 292.8 Hz), 33.5 (3J_{(Sn,C)} 34.6 Hz), 34.3, 36.9 (3J_{(Sn,C)} 18.2 Hz), 38.1, 44.3 (2J_{(Sn,C)} 9.8 Hz), 45.1, 49.9 (1J_{(Sn,C)} 245.3 Hz), 50.9, 121.6 (3J_{(Sn,C)} 32.9 Hz), 124.4, 124.5, 127.1, 133.5, 150.4 (3J_{(Sn,C)} 18.6 Hz), 178.1 (3J_{(Sn,C)} 12.3 Hz); \(^{119}Sn \) NMR (111.8 MHz, CDCl_3): \(\delta_{Sn} -40.48 ppm. \)

Stille coupling of methyl-4-trineophylstannylbicyclo[4.4.0]dec-5-ene-2-carboxylate (14) with 4-iodoanisole. General synthetic procedure

Synthesis of methyl 4-(4-methoxy-phenyl)bicyclo[4.4.0]dec-5-ene-2-carboxylate (19). A solution of 14 (0.15 g, 0.2 mmol), Pd_2(dba)_3 (3 mg, 0.005 mmol), Ph_3As (3 mg, 0.01 mmol), LiCl (12.5 mg, 0.3 mmol), 4-iodoanisole (24 mg, 0.2 mmol) and DMF (0.4 mL) under argon atmosphere was maintained in an ultrasonic bath. After 18 h the reaction was complete and no starting product was observed by TLC (SiO_2). The crude product was filtered through celite to separate the inorganic insolubles salts together with the catalyst. The solvent was distilled off under reduced pressure and product 19 was isolated by column chromatography with alumina treated with 10% of KF to retain trineophyltinhalides formed during the reaction. 19 eluted with 98:2 (hexane/Et_2O) as clear yellowish oil. (36 mg, 68%). IR (\(\nu_{max} \) cm\(^{-1}\)): 1744 (C=O); \(^1H \) NMR (300.0 MHz, CDCl_3) \(\delta_H 1.46-1.50 (4H, m), 1.61 (2H, m), 2.02-2.08 (2H, m), 2.23 (dt, 1H, 3J_{(H,H)} 2.7 Hz, 3J_{(H,H)} 5.8 Hz), 2.50 (2H, dd, 3J_{(H,H)} 5.1 Hz, 3J_{(H,H)} 5.2 Hz), 2.65 (dt, 1H, 3J_{(H,H)} 2.6 Hz, 3J_{(H,H)} 5.4 Hz), 3.39 (dt, 1H, 3J_{(H,H)} 3.4 Hz, 3J_{(H,H)} 5.9 Hz), 3.63 (s, 3H), 3.66 (s, 3H), 5.55 (d, 1H, 3J_{(H,H)} 3.5 Hz), 6.96-7.15 (m, 4H); \(^{13}C \) NMR (75.4 MHz, CDCl_3) \(\delta_C 26.4, 27.2, 28.8, 30.6, 35.8,
Methyl 4-(2-pyridyl) bicyclo[4.4.0] dec-5-ene-2-carboxylate (20). Yellowish oil. Yield: 53%. IR (ν_max cm⁻¹): 1746 (C=O); ¹H NMR (300.0 MHz, CDCl₃) δH 1.47-1.52 (4H, m), 1.63 (2H, m), 2.05-2.09 (2H, m), 2.51 (dd, 2H, 3J_HH 5.0 Hz, 3J_HH 5.2 Hz), 2.63 (dt, 1H, 3J_HH 1.9 Hz, 3J_HH 6.3 Hz), 2.68 (dt, 1H, 3J_HH 1.9 Hz, 3J_HH 5.4 Hz), 3.37 (dt, 1H, 3J_HH 3.5 Hz, 3J_HH 5.8 Hz), 3.66 (s, 3H), 5.56 (d, 1H, 3J_HH 3.5 Hz), 7.06-7.46 (m, 3H), 8.46 (d, 1H); ¹³C NMR (75.4 MHz, CDCl₃) δC 26.6, 27.0, 28.9, 30.6, 35.9, 42.2, 43.5, 46.9, 50.3, 120.4, 121.7, 128.0, 135.8, 141.3, 149.5, 162.3, 174.7; Anal. Calcd. for C₁₇H₂₁NO₂ (271.1572) C, 75.3; H, 7.8; N, 5.2. Found: C, 75.3; H, 7.9; N, 5.0%.

Methyl 4-(6-methyl-2-quinolyl)bicyclo[4.4.0] dec-5-ene-2-carboxylate (21). Yellowish oil. Yield: 85%. IR (ν_max cm⁻¹): 1741 (C=O); ¹H NMR (300.0 MHz, CDCl₃) δH 1.46-1.50 (4H, m), 1.62 (2H, m), 2.04-2.10 (2H, m), 2.35 (s, 3H), 2.52 (dd, 2H, 3J_HH 4.9 Hz, 3J_HH 5.2 Hz), 2.65 (dt, 1H, 3J_HH 1.9 Hz, 3J_HH 6.0 Hz), 2.67 (dt, 1H, 3J_HH 1.9 Hz, 3J_HH 5.3 Hz), 3.35 (dt, 1H, 3J_HH 3.6 Hz, 3J_HH 5.9 Hz), 3.67 (s, 3H), 5.37 (d, 1H, 3J_HH 3.6 Hz), 7.25-7.57 (m, 4H), 7.78 (d, 1H); ¹³C NMR (75.4 MHz, CDCl₃) δC 21.4, 26.4, 27.2, 27.6, 28.8, 35.8, 42.2, 43.3, 46.9, 50.3, 120.13, 126.4, 128.0, 129.9, 131.5, 135.2, 135.3, 141.3, 149.5, 160.8, 174.6; Anal. Calcd. for C₂₂H₂₅NO₂ (335.1885) C, 78.8; H, 7.5; N, 4.2. Found: C, 78.7; H, 7.6; N, 4.2%.

8-(4-Methoxyphenyl)bicyclo[8.4.0.0²,7]tetradeca-4,9-diene-3,6-dione (22). Clear yellowish oil. Yield: 57%. IR (ν_max cm⁻¹): 1686 and 1666 (C=O); ¹H NMR (300.0 MHz, CDCl₃) δH 1.50 (2H, m), 1.60 (2H, m), 1.82 (2H, m), 2.24 (2H, t, 3J_HH 6.8 Hz), 2.96 (1H, m), 3.38 (1H, m), 3.69 (1H, dd, 3J_HH 2.5 Hz, 3J_HH 11.5 Hz), 3.80 (3H, s), 4.16 (1H, dd, 3J_HH 3.5 Hz, 3J_HH 11.6 Hz), 5.65 (1H, d, 3J_HH 3.6 Hz), 6.47 (1H, d, 3J_HH 10.5 Hz), 6.56 (1H, d, 3J_HH 10.5 Hz), 6.97-7.17 (4H, m); ¹³C NMR (75.4 MHz, CDCl₃) δC 25.8, 27.2, 29.8, 35.2, 43.8, 45.8, 48.0, 50.5, 51.1, 55.4, 121.1, 125.7, 126.0, 129.9, 137.3, 146.0, 147.1, 148.1, 159.3, 193.5, 193.4; Anal. Calcd. for C₂₁H₂₂O₃ (322.1569) C, 78.2; H, 6.9. Found: C, 78.2; H, 6.9%.

8-(2-Pyridyl)bicyclo[8.4.0.0²,7]tetradeca-4,9-diene-3,6-dione (23). Clear yellowish oil. Yield: 48%. IR (ν_max cm⁻¹): 1681 and 1669 (C=O); ¹H NMR (300.0 MHz, CDCl₃) δH 1.48 (2H, m), 1.59 (2H, m), 1.86 (2H, m), 2.22 (2H, t, 3J_HH 6.5 Hz), 2.97 (1H, m), 3.38 (1H, m), 3.70 (1H, dd, 3J_HH 2.7 Hz, 3J_HH 11.6 Hz), 4.17 (1H, dd, 3J_HH 3.6 Hz, 3J_HH 11.6 Hz), 5.65 (1H, d, 3J_HH 3.6 Hz), 6.46 (1H, d, 3J_HH 10.6 Hz), 6.58 (1H, d, 3J_HH 10.6 Hz), 7.11-7.15 (3H, m), 8.58-8.60 (1H, m); ¹³C NMR (75.4 MHz, CDCl₃) δC 25.8, 27.2, 29.8, 35.2, 43.8, 43.9, 44.4, 51.2, 120.1, 121.4, 128.5, 135.8, 145.2, 146.3, 147.4, 149.5, 160.5, 192.7, 193.9; Anal. Calcd. for C₁₉H₁₉NO₂ (293.1416) C, 77.8; H, 6.5; N, 4.8. Found: C, 77.8; H, 6.5; N, 4.7%.

8-(6-Methyl-2-quinolyl)bicyclo[8.4.0.0²,7]tetradeca-4,9-diene-3,6-dione (24). Clear yellowish oil. Yield: 68%. IR (ν_max cm⁻¹): 1678 and 1667 (C=O); ¹H NMR (300.0 MHz, CDCl₃) δH 1.49 (2H, m), 1.58 (2H, m), 1.85 (2H, m), 2.15 (2H, t, 3J_HH 6.9 Hz), 2.59 (3H, s), 2.96 (1H, m), 3.37 (1H, m), 3.67 (1H, dd, 3J_HH 2.6 Hz, 3J_HH 11.5 Hz), 4.24 (1H, dd, 3J_HH 3.5 Hz, 3J_HH 11.5 Hz), 5.63 (1H, d, 3J_HH 3.7 Hz), 6.45 (1H, d, 3J_HH 10.5 Hz), 6.56 (1H, d, 3J_HH 10.5 Hz), 6.98-7.15 (4H, m), 7.90-8.01 (1H, m); ¹³C NMR (75.4 MHz, CDCl₃) δC 25.2, 25.8, 27.2, 29.8, 35.2,
43.8, 45.8, 48.0, 51.1, 121.9, 123.5, 126.7, 128.4, 129.6, 130.0, 135.1, 142.9, 146.0, 147.4, 147.5, 148.1, 157.9, 193.4, 193.5. Anal. Calcd for C_{24}H_{23}NO_{2} (357.4449) C, 80.6; H, 6.5; N, 3.9. Found: C, 80.6; H, 6.5; N, 3.9%.

Acknowledgements

This work was supported by CONICET (Capital Federal, Argentina / PIP 6095), ANPCyT (Capital Federal, Argentina / BID 1728 / OC-AR PICT N° 2467) and Universidad Nacional del Sur (Bahía Blanca, Argentina). We are thankful to Dr. Manuel González Sierra (IQUIOS, Universidad Nacional de Rosario, Argentina) for his help in connection with the NMR spectra.

References

