Balancing Defiance and Cooperation: The Design and Human Critique of a Virtual Free Improviser

Ritwik Banerji
Center for New Music and Audio Technologies (CNMAT)
Department of Music
University of California, Berkeley
ritwik@berkeley.edu

ABSTRACT

This paper presents the design of a virtual free improviser, known as “Maxine”, which generates creative output in interaction with human musicians by exploiting a pitch detection algorithm to interpret pitchless soundscapes. This allows it to express its own creative options from time to time… "...a so-called ‘pitch follower’…", as Lewis describes. Since George Lewis’ Voyager [1, 2], researchers in computer music have designed a variety of virtual performers of free improvisation [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] which interact with human musicians to perform (ideally) as another semi-autonomous musician in an ensemble of human improvisers. As Lewis writes regarding Voyager [2], virtual improvisers should listen and respond to human players to produce a musical output which appropriately mirrors their behavior, nor the need to “prod the composer” [3]. At the other extreme, the system capitalizes on the pitch detector’s interpretation that pitchless sounds, such as a styrofoam ball scraped against a drum head, the hum of an amplifier, or a woodwind multiphonic, have a definite pitch, or more often, are simply a run of pitches. While the pitch detector’s interpretations of these pitchless sounds as “pitched” is technically inaccurate, they may provide a means realizing Young’s ideal of opacity in the system’s input-output transformation, a sense of mystery and individualism which Lewis wittily depicts as the algorithm exercising its own creative options. This paper presents the design of a virtual free improviser, known as “Maxine” [4], built to creatively exploit the pitch detector’s odd interpretations of sonic material in free improvisation, an auditory environment for which it is destined to fail. The system capitalizes on the pitch detector’s simultaneously “intimate” and “opaque” interpretations pitchless sounds in order to produce an overall interactivity which balances between sympathetic and oppositional behaviors. After an overview of system design and its resultant behavior, the paper concludes to focus on the critical evaluation of improvisers who have played with the system as part of an ethnographic study of social and musical interaction in free improvisation. Ultimately, practically, the feedback on such systems is not simply about improving design, but actual interjection of “pitch”-related events, regardless of whether the event was a pitch change or an attack. These durations are used to set the agent’s base quantization, (BQ). Similar to the tatum [18], or temporal atom, BQ is the shortest duration for any MIDI output from the agent. Actual durations, or local quantization (LQ), are a random multiple of the BQ between one and 15. However, not all attacks or reported changes in pitch are used to set the BQ, and reporting of these events is filtered by a probability gate (see section 2.4). Commands to change the LQ to a new random multiple of the BQ are sent out at the rate of the current BQ. Another probability gate, however, only allows a percentage of these commands to cause an actual change in the LQ. Similarly, note output messages are being sent out at the rate of the LQ, but another probability gate controls the percentage of these note output messages resulting in an actual MIDI message.

2. SYSTEM DESIGN

The system uses a multi-agent architecture. Several identical agents simultaneously process auditory input and control sonic output. Agents operate non-hierarchically and in parallel to the rest (see Figure 1). While each agent is the same, internal values and end outputs can vary significantly at any given time. Each agent functions as a single “arm” or “finger” of the system, controlling either MIDI note or controller values based on the processing of auditory input from its respective “ear.” The rest of section 2 traces the flow of information through a single agent (see Figure 2).

2.1. Input and Feature Extraction

The system receives audio input from the physical world into two dynamic microphones (Behringer XM8500), one aimed at the human performer and the other at the system’s own loudspeaker output. Analog to digital conversion occurs through a MOTU UltraFone interface and audio feature extraction occurs in Max/MSP. Each agent extracts three basic features from incoming digital audio signal in real-time: 1) pitch and 2) attack information, both from Behringer’s [pitch~] object [16] (based on Puckette’s [fiddle~] [17] and hereafter referred to simply as “[pitch~]”), and 3) amplitude information. Not note output from each agent is selected from a three-valued pitch-set within a three octave range (C1 to C4) which may change at any time. A note P(x) in the pitch-set P(1, 2, 3, 4) is changed to a new value (randomly chosen within same range as above). Current incoming values from [pitch~] P(x) is a match (or when P = P0). Essentially, this mechanism is much like the modern mechanical arcade game “mecha-mole” [19]. However, similar to the BQ, not all matches (P = P0) trigger a change in the agent’s pitch set because of filtering out by another probability gate.

2.4. Probability Gates

Probability gates determine the likelihood that an incoming message will be passed through the gate. This probability rises and falls according to incoming amplitude from the microphones. However, the mapping is constantly changing both in direction (inverse vs. direct) and in degree (see Figure 3). Specifically, current incoming volume is scaled to probability according to current high (H) and low thresholds (L) for scaling. Changes in threshold values are triggered by changes in pitch reported by [pitch~]. However, this triggering is also passed through the very same probability gate. Once a change in threshold is triggered, current incoming amplitude data is polled at the rate of the

Figure 1. Overall flow of information through system, from physical world, through agents, to sound output and the human performer, and back to the physical world.

Small gears represent each agent.

Figure 2. Flow of information through a single agent, from physical world to sound output (and back to the physical world.)
Balancing Defiance and Cooperation: The Design and Human Critique of a Virtual Free Improviser

Ritwik Banerji
Center for New Music and Audio Technologies (CNMAT)
Department of Music
University of California, Berkeley
ritwik@berkeley.edu

ABSTRACT
This paper presents the design of a virtual free improviser known as “Mazine”, built generate creative output in interaction with human musicians by exploiting a pitch detection algorithm to interpret a relatively noisy and pitchless sonic environment. After an overview of the system’s design and behavior, a summary of improvisers’ critiques of the system are presented, focusing on the issue of balancing between system output which supports and opposes the playing of human musical interactivity. System evaluation of this kind is not only useful for further system development, but as an investigation of the implicit ethics of listening and interacting between players in freely improvised musical performance.

1. INTRODUCTION
...a so-called ‘pitch follower’...— a device known to exercise its own creative options from time to time...”
—George Lewis [1]

Since George Lewis’ Voyager [1, 2], researchers in computer music have designed a variety of virtual performers of free improvisation [3, 4, 5, 6, 7, 8, 9, 10, 11, 12], interactive music systems built to perform (ideally) as just another semi-autonomous musician in an ensemble of human improvisers. As Lewis writes regarding Voyager [2], virtual improvisers should listen and respond to human playing to produce sonic output which appropriately shifts between supporting and opposing other improvisers’ musical ideas. At one extreme, the improviser should influence the way their playing on the system’s output, as Michael Young describes it, a sense of “intimacy” in the human-machine interaction [12]. At the other extreme, the player should feel that the system simply mirrors their behavior, or the need to “prod the computer during performance”, as Lewis puts it. Similarly, Young describes this as the “opacity”, or the lack of transparency in the relationship of system input and output. However, building a system to interact with human improvisers with a sense of intimacy and sympathy is a special challenge given the tendency of free improvisers to explore timbral and complex material. As several system designers have noted, free improvisational practice frequently features unpitched and noisy sounds and generally avoids musical structures based in pitch, such as melody or harmony. Likewise, in order to design systems which listen and respond sympathetically to such playing, many researchers have discovered an approach in which the system’s real-time analysis of the human player’s sound output is solely pitch-based [5, 6, 7, 8, 9, 10, 12]. In addition to pitch, this system uses a variety of spectral analysis tools to decompose the complexity of common practice in free improvisation into several components, such as noiseless and roughness [10].

Given how improvisers often play, this is a logical direction to follow in building systems to exhibit greater “intimacy” in human-machine interaction. Nevertheless, it overlooks the hidden utility of the pitch detector’s interpretation that pitchless sounds, such as a strophoam ball scraped against a snare drum head, the hum of an amplifier, or a woodwind multiphonic, have a definite pitch, or more often, are simply a run of pitches. While the pitch detector’s interpretation of these pitchless sounds as “pitched” is technically inaccurate, they may provide a means of realizing Young’s ideal of opacity in the system’s input-output transformation, a sense of mystery and individualism which Lewis wittily depicts as the algorithm exercising its own creative options”. This paper presents the design of a virtual free improviser, known as “Mazine” [4], built to creatively exploit the pitch detector’s odd interpretations of sonic material in free improvisation, an auditory environment for which it was designed to fail. The system capitalizes on the pitch detector’s simultaneously “intimate” and “opaque” interpretations pitchless sounds in order to produce an overall interactiveness which balances between sympathetic and oppositional behaviors. After an overview of system design and its resultant behavior, the paper concludes to focus on the critical evaluation of improvisers who have played with the system as part of an ethnographic study on social and musical interaction in free improvisation.

2. SYSTEM DESIGN
The system uses a multi-agent architecture. Several identical agents simultaneously process auditory input and control sonic output. Agents operate non-hierarchically and in parallel to the rest (see Figure 1). While each agent is the same, internal values and end outputs can vary significantly at any given time. Each agent functions as a single “arm” or “finger” of the system, controlling either MIDI note or controller values based on the processing of auditory input from its respective “ear.” The rest of section 2 traces the flow of information through a single agent (see Figure 2).

2.1. Input and Feature Extraction
The system receives audio input from the physical world into two dynamic microphones (Behringer XM8500), one aimed at the human performer and the other at the system’s own loudspeaker output. Analog to digital conversion occurs through a MOTU UltraLite audio interface and audio feature extraction occurs in Max/MSP. Each agent extracts three basic features from incoming digital audio signal in real-time: 1) pitch and control information; both from the human performer’s [pitch~] object [16] (based on Puckett’s [fiddle~] [17] and hereafter referred to simply as “[pitch~]”), and 3) amplitude information.

2.2. Note Event Timing Control
Agents use changes in pitch and attack information reported by [pitch~] to control output timing. Reported pitch changes and attacks are sent to a timer, which measures the interval between events, regardless of whether the event was a pitch change or an attack. These durations are used to set the agent’s base quantization, (BQ). Similar to the duration [18], or temporal atom, BQ is the shortest duration for any MIDI output from the agent. Actual durations, or local quantization (LQ), are a random multiple of the BQ between one and 15. However, not all attacks or report changes in pitch are used to set the BQ, and reporting of these events is filtered by a probability gate (see section 2.4).

Commands to change the LQ to a new random multiple of the BQ are sent out at the rate of the current BQ. Another probability gate, however, only allows a percentage of these commands to cause an actual change in the LQ. Similarly, note output messages are being sent out at the rate of the LQ, but another probability gate controls the percentage of these note output messages resulting in an actual MIDI message.

2.3. Pitch Selection
Note output from each agent is selected from a three-valued pitch set within a three octave range (C1 to C4) which may change at any time. A note P1 or P2, in the pitch-set P1, 2 3 4, is changed to a new value (randomly chosen within same range) at a quasi-random rate (as above). While the incoming value from [pitch~] is a match (or when P1 - P2). Essentially, this mechanism is much like the modern mechanical arcade game “ring-a-mole”. However, similar to the BQ, not all matches (P1 - P2) trigger a change in the agent’s pitch set because of filtering out by another probability gate.

2.4. Probability Gates
Probability gates determine the likelihood that an incoming message will be passed through the gate. This probability rises and falls according to incoming amplitude from the microphones. However, the mapping is constantly changing both in direction (inverse vs. direct) and in degree (see Figure 3).

Specifically, current incoming volume is scaled to probability according to current high (H) and low thresholds (L) for scaling. Changes in threshold values are triggered by changes in pitch reported by [pitch~]. However, this triggering is also passed through the very same probability gate. Once a change in threshold is triggered, current incoming amplitude data is pooled at the rate of the...
current base quantization and sent as the new high or low threshold. When the “high” threshold is lower than the “low” threshold, an inverse mapping of volume to probability results.

2.5. Sound Output and Timbre Control

Based on the above, each agent sends either MIDI-note or controller values from Max/MSP for output in Ableton Live. In typical real-time practice, five agents are responsible for note generation while three control the manipulation of timbral parameters in Ableton. Controller values are used to manipulate the timbre of virtual instruments in Ableton Live. Sound outputs from Ableton Live typically include metal percussion, synthesized versions of prepared or “extended” guitar and piano techniques, a variety of synthesizers, and signal processing tools (e.g., filters, delay, etc.) used to control audio feedback. Strain, sensitivity, and timbral time only send MIDI notes to Ableton (see Figure 2). These note values are set to control timbral parameters using Ableton’s MIDI-mapping capabilities.

3. SYSTEM BEHAVIOR

3.1. Intimacy and Opacity from \([\text{pitch}~]\)

Because of its reliance on pitch detection as its primary means of real-time analysis of sonic input, the system’s interactive behavior simultaneously exhibits both the opacity and intimacy Young idealizes.

3.1.1. Intimacy

[pitch\(^-\)\] offers as a robust, if crude, means of providing real-time analysis of sonic input, the system’s ability to change its pitch set. For example, if the system is producing \(Gb4\) while also waiting for \(Gb4\) to appear in the environment, one would assume that the system has a high like- lelihood of itself to change its pitch set. In practice, this rarely occurs. Much of the system’s output features heavy manipulations of timbre. As a result, while the system is sensitive to \(Gb4\) whether to \(Ableton\), the timbre of this \(Gb4\) may be so significantly manipulated that \([\text{pitch}~]\) detects no \(Gb4\) from the input signal.

Overall, the pitch \([\text{pitch}~]\), in which at least microphone is directed at the system’s own output, allows the system to demonstrate a better balance between resistive and cooperative interactivities. In my own early experiments with the system (as a solo saxophonist), I felt the need to “prod” the system, as Lewis would say, with microphones which were only aimed at my instrument. To correct this, the interactive feedback setup was implemented. This allows the system to respond in a more satisfyingly unpredictable manner as it reacts to its own output, or even the slight hum of the loudspeaker itself. System sounds, alongside other environmental noises, are, like anything picked up by the microphones, just registered as more “pitches” and also stimulate the system to respond. In testing the system with improvisers, microphone placement was often varied based on the player’s preference for a more aggressive or sympathetic interactivity.

4. EVALUATION OF THE SYSTEM BY FREE IMPROVISERS

4.1. Methodology

The system was first designed in 2009. Since then, over 90 musicians, primarily in Berlin, San Francisco, and Chicago, have played informal, private improvisation sessions with this system. The initial motivation for testing was to solicit the critique of players with extensive experience in free improvisation. In order to identify deviations from the ideal, system improvement was implemented. As a result, the system’s interactive behavior, though reserved, was too sensitive or too meek, hesitant, or reserved in its interactive behavior. As I have discussed elsewhere \([14]\), taking an open-ended ethnomusicographic approach to researcher-subject interaction and letting the subject drive the conversation is far more effective than using pre-determined questions and quantitative evaluation in a controlled laboratory setting. Given the wide range of behaviors desired and resultant from free improvisation (whether human or machine), specific questions and criteria may be irrelevant to the interaction which just transpired and hinder the performer’s discussion of the system’s interaction. As a result, the next section only focuses on players’ comments which directly referred to the issue of balancing support and opposition, and thus is a small cross-section of the over 300 hours of commentary on this system collected over several years.

This method not only elicited performers’ critiques of the system, but their discussion of similar moments of frustration with human players. In other words, asking them to critique the system brought them to express not just what they expect of a machine, but what they expect of other people. This methodology makes performers feel safe to express such socio-musical expectations in a manner that they normally would in face-to-face interaction with other players. Again, respecting the musical liberty of their peers, improvisers tend to avoid negative critical discussion of their peers’ playing. After all, if the practice of free improvisation purports to emancipate musicians from the “rigidity and formalism” \([21]\) of other musical practices, it makes no sense for players verbally express their expectations to other performers, whether beforehand or afterwards.

By stark contrast, players found that critiquing a non-human musician enabled them to articulate expectations that they normally feel implicitly barred from openly expressing in their normal social interactions with other improvisers. While improvisers feel that such direct expressions of expectation are essentially a taboo practice in their socio-musical world, this hardly means that no player has specific expectations, much less that no other player disapproves. As one performer put it, “I wish I could tell other people things like this!”

4.2. Summary of Results

4.2.1. Preference for Greater Assertiveness

On the one hand, many players found the system to be too meek, hesitant, or reserved in its interactive behavior. These performers felt that the system did not take enough initiative in interaction, or as one player put it, failed to “inspire” them. They found themselves stifled by the system’s dependence on human input and its tendency, in their experience with it, to wait for the human player to play before producing material of its own.

For example, one player found that the system’s silence in some situations was not experienced as a polite gesture of yielding to others, but as a frustrating inability to sustain the drama of the interaction. Such behavior reminded him of an inexperienced improvisor whose reticence and lack of confidence saps an improvisation of its overall energy. In contrast, the system’s interactive behavior, he stressed the critical importance, in his view, of simply taking a risk and playing something rather than remaining silent because of inhibition or self-doubt.

For another player, the problem was not that the system was too quiet, but rather that it was too sensitive to his playing. Rather than remaining with one sonority for a period of time, the system reacted to his playing too frequently, causing it to change its timbral output too rapidly for this player’s tastes. He described the system’s behavior as “tickle”, either childlike, fidgeting from idea to idea. While he found moments of the system’s behavior interesting, its inability to stay with one sonic idea was disappointing. Instead, he would have preferred greater opacity in the system’s improvisatory behavior, remaining with one idea and allowing the human player to go elsewhere sonically without reacting immediately to each
current base quantization and sent as the new high or low threshold. When the “high” threshold is lower than the “low” threshold, an inverse mapping of volume to probability results.

2.5. Sound Output and Timbre Control

Based on the above, each agent sends either MIDI-note or controller values from Max/MSP for output in Ableton Live. In typical real-time performance practice, five agents are responsible for note generation while three control the manipulation of timbral parameters in Ableton. Controller values are used to manipulate the timbre of virtual instruments in Ableton Live. Sound outputs from Ableton Live typically include metal percussion, synthesized versions of prepared or “extended” guitar and piano techniques, a variety of synthesizers, and signal processing tools (e.g. filters, delay, etc.) used to control audio feedback. String synthesis and timbral control only send MIDI notes to Ableton (see Figure 2). These note values are set to control timbral parameters using Ableton’s MIDI-mapping capability.

3. SYSTEM BEHAVIOR

3.1. Intimacy and Opacity from [pitch-]

Because of its reliance on pitch detection as its primary means of real-time analysis of sound input, the system’s interactive behavior simultaneously exhibits both the opacity and intimacy Young idealizes.

3.1.1. Intimacy

[pitch-] offers as a robust, if crude, means of providing this virtual improviser with a real-time analytical representation of its sonic environment. As noted in section 2.2., pitch changes (as reported by [pitch-]) are used to control the relative temporal density of the system’s note output. This allows the system to follow the overall event-density of the human performer (e.g. if the performer elapses 100-400ms, the system’s output will be in a similar range.)

3.1.2. Opacity from Intimacy

However, regardless of whether incoming sounds are pitched or not, [pitch-] guesses the “pitch” of these sounds, looking for an even spacing of harmonic partials in order to identify a fundamental frequency. Again, it is senseless to say that a noisy, aperiodic sound like that of a styrofoam ball scraped against a drum head, has a definite pitch. Defiantly, [pitch-] defiantly claims otherwise, reporting an unsettling specific value: (hypothetically) a clear D#4, exactly 17.9 cents sharp!

This interpretation is both intimate and opaque. It is intimate in that for a given spectral profile [pitch-] will always produce the same estimated pitch value. It is opaque in that the relationship of this value and the sound itself, given its pitchless quality, seems almost random. The system uses [pitch-]’s simultaneously opaque and intimate interpretation of such sounds to produce behavior which is both sympathetic but also mysterious in an interactive logic. For example, given the noisiness of transients at the onset of many note events, [pitch-] often parses such sounds as first a flurry of rapid “pitch” changes (see Figure 4) and then the pitch audibly produced. The human player plays just one note, but the system may respond disproportionately, reacting with a gust of activity to this small perturbation. Still, because of the use of probability gates (section 2.4.), the system does not always react in this unbalanced manner.

For complex, time-varying timbres, [pitch-] allows the system to react temporally to the human player’s subtle modulations of sound. As a player’s timbre changes, [pitch-] yields a new estimated “pitch” value, effectively allowing the system to use [pitch-] as a crude approximator of the spectral flux [19, 20]. It is a way of streamlining an intervention of a spectrum over time. In turn, this enables the system to vary its timbral output and control note activity (section 2.3.), in a manner corresponding to the overall pacing and event-density of the human player.

3.1.3. Feedback Effects

The combination of the whack-a-mole mechanism for pitch selection (section 2.3.) and feedback (section 2.1.) implies that the system may trigger itself to change its own pitch set. For example, if the system is producing Gb4 while also waiting for Gb4 to appear in the environment, one would assume that the system has a high likelihood of itself to change its pitch set. In practice, this rarely occurs. Much of the system’s output features heavy manipulations of timbre. As a result, while the system is sensitive to the environment, the timbre of this Gb4 may be so significantly manipulated that [pitch-] detects no Gb4 from the input signal.

Overall, the feedback, in which at least microphone is directed at the system’s own output, allows the system to demonstrate a better balance between resistive and cooperative interactivities. In my own early experiments with this system (as a saxophonist), I felt the need to “prod” the system, as Lewis would say, with microphones were only aimed at my instrument. To correct this, an inverted feedback setup was implemented. This allows the system to respond in a more satisfyingly unpredictable manner as it reacts to its own output, or even the slight hum of the loudspeaker itself. System sounds, alongside other environmental noises, are, like anything picked up by the microphones, just registered as more “pitches” and also stimulate the system to respond. In testing the system with improvisers, microphone placement was often varied based on the player’s preference for a more aggressive or sympathetic interactivity.

4. EVALUATION OF THE SYSTEM BY FREE IMPROVISERS

4.1. Methodology

The system was first designed in 2009. Since then, over 90 musicians, primarily in Berlin, San Francisco, and Chicago, have played informal, private improvisation sessions with the system. Chicago was the site of a more focused research activity which included soliciting first direct criticism of the system and then the opinion of its users. Effect of changes in timbre and pitch in the physical world on system behavior.

4.1.1. Preference for Greater Articulateness

On the one hand, many players found the system to be too mechanistic, insistent, or over-controlling. These performances felt that the system did not take enough initiative in interaction, or as one player put it, failed to “inspire” them. They felt stymied by the system’s dependence on human input and its tendency, in their experience with it, to wait for the human player to play before producing its own material. For example, one player found that the system’s silence in some situations was not experienced as a polite gesture of yielding to others, but as a frustrating inability to sustain the drama of the interaction. Such behavior reminded him of an inexperienced improviser whose reticence and lack of confidence saps an improvisation of its overall energy. In this sort of system behavior, he felt the improviser lead the conversation, allowing them to focus on whatever they found most interesting or problematic about the system’s behavior. As I have discussed elsewhere [14], taking an open-ended ethnographic approach to researcher-subject interaction and letting the subject drive the conversation is far more effective than using pre-determined questions and quantitative evaluation in a controlled laboratory setting. Given this method not only elicited performers’ critiques of the system, but their discussion of similar moments of frustration with human players. In other words, asking them to critique the system brought them to express not just what they expect of a machine, but what they expect of other people. This methodology makes performers feel safe to express such socio-musical expectations in a manner that they normally feel implicitly barred from openly expressing in their normal social interactions with other improvisers. While improvisers feel that such direct expressions of expectation are essentially a taboo practice in their socio-musical world, this hardly means that no player has specific expectations, merely that no other player disadvantages them. As one performer put it, “I wish I could tell other people things like this!”

4.2. Summary of Results

4.2.1. Preference for Greater Articulateness

Overall, the use of feedback, in which at least microphones, microphone placement was often varied based on the player’s preference for a more aggressive or sympathetic interactivity.
new idea he introduced. For him, this behavior would have allowed for a more meaningful contrast, juxtaposition of sonorities, or tension to develop.

4.2. Preference for Greater Sensitivity

Nevertheless, many other players found the system too aggressive. One individual directly blamed this on the fact that the system reacts to itself. This mechanism and its effects gave him the impression that the system behaved like a self-absorbed individual during improvisation, following its own ideas rather than cooperating with others. Similarly, another player described this as a failure to “meet me half-way,” or the inability to choose material which partially emulated, and partially deviated, from the choices of the other musical interactors.

In one rather illustrative case, the system persisted with a repetitive undulating feedback effect for nearly two minutes. During this time, the human player experimented with a variety of ideas (melodic runs, sustained tones, quick high-energy blasts, etc.). At one point he stopped playing and stared at the amplifier with a disgusted look, as if to tell the system, “stop!” Indeed, after the piece he described the system’s behavior as “annoying” in its failure to sense his disgust for its playing at that moment.

4.3. Preference for Defiance? Two Individuals

Strikingly, two individuals showed a strong preference for defiant or resistant system behavior. For one Berlin-based cellist, playing with the system was a relatively novel experience that references (i.e. reproduction or mimicry) what the cellist described as a failure to “meet me half-way”, or the inability to choose material which partially emulated, and partially deviated, from the choices of the other musical interactors.

For the other player, a kind of interaction which could also be described as a “backhanded compliment.” Later on, however, he explained that when he was a younger improviser, he too used to play in a much more reactive manner. However, as he became older and more experienced, he reduced the tendency of reacting too quickly to the system’s behavior, and sought to work with players whose modes of interaction with other players were less obvious, or more “opaque,” as Young might describe it [12].

4.4. Discussion

Unfortunately, commentary generated from extensive tests of this system with a variety of players ultimately gives no clear insight into whether the system is a free improviser. Critical evaluations of this system by a wide variety of improvisers reveals a similarly broad range of opinions on how well it balances engagement in supportive and oppositional behaviors. While the last two individuals discussed in detail showed a preference for greater defiance and less reactivity in the system, many other individuals asked to critique the system did not agree with this assessment. In the end, data from this study does not indicate conclusively one way or another whether the system should be designed to be more supportive or more aggressive in its interactions with human improvisers.

However, as I have previously argued [14], commentary elicited in tests of this system has a value which goes far beyond simply refining the design of interactive music systems. Asking players to critique the interaction of machines built to interact with human players like free improvisers elicits a discussion of what conduct is preferred in these interactions. In other words, the confrontation with a non-human musician brings improvisers to discuss the sense of ethics which they enact in how they listen and react (or not) to other performers.

Generally speaking, critical commentary on this system is useful for complicating any simple understanding of behaviors or dispositions such as “sensitivity,” “supportive,” “aggressive,” or “defiant” as descriptors for the behavior of an improviser, whether human or machine. In the case of the Berlin system, the system’s behavior can be said to be both too sensitive and not sensitive enough. On the one hand, the system’s tendency (thought by the cellist) to mirror what the human player was doing could be described as too sensitive or too responsive. On the other, this unfettered hyper-reactivity is itself a musical system which makes the system’s failure to interpret the intentions and desires of the other player, a kind of interaction which could also be described as lacking a sense of autonomy.

5. CONCLUSION

The diversity of opinions on this system’s behavior provides no clear answers for how this system ought to be re-designed. Similarly, this broad range of opinions fails to indicate what the ideal design for a kind of musical interactivity which is more resistive than supportive would look like for a designer simply looking for the best way to build a new system, analysis of the results of this study along these lines is thus right-shouldered.

The discussion on how this system behaves for insights into further systems’ development is thus to miss the tremendous opportunity it provides to empirically investigate the conceptualizations of system behavior which guide how players engage in moment-to-moment decision-making in the course of their improvisatory interactions with other individuals. For those who desired greater sympathy from the system, their opinion reflects a general belief that the autonomy of one individual must be exercised in a manner such that it does not infringe upon the experience of liberty for others. Conversely, those who desired the system to demonstrate greater autonomy implicitly advocated a very different conceptualization of the relationship of freedom and ethics: the more that the system’s behavior was unfluenced and autonomous in relation to theirs, the more they experienced freedom themselves.

Acknowledgments

Field research for this project would not have been possible without financial support from the Mellon Foundation, Fulbright Journalism Fellowship (Germany), the Berlin Program for Advanced German and European Studies at MIT, and the Fulbright Journalism Fellowship (Germany) for publication of this paper, and to Adrian Freed, Benjamin Brinner and anonymous reviewers for their helpful comments.

6. REFERENCES

new idea he introduced. For him, this behavior would have allowed for a more meaningful contrast, juxtaposition of sonorities, or tension to develop.

4.2. Preference for Greater Sensitivity

Nevertheless, many other players found the system too aggressive. One individual directly blamed this on the fact that the system reacts to itself. This mechanism and its effects gave him the system behaved as a self-absorbed individual during improvisation, following its own ideas rather than cooperating with others. Similarly, another musician described this as a failure to "meet halfway," or the inability to choose material which partially emulated, and partially deviated, from the choices of the other musicians.

In one rather striking case, the system persisted with a repetitive undulating feedback effect for nearly two minutes. During this time, the human player experimented with a variety of ideas (melodic runs, sustained tones, quick high-energy blasts, etc.). At one point he stopped playing and stared at the amplifier with a disgusted look, as if to tell the system, "stop!" Indeed, after the piece he described the system's behavior as "annoying" in its failure to sense his disgust for its playing at that moment.

4.3. Preference for Defiance? Two Individuals

Strikingly, two individuals showed a strong preference for defiant or resistant system behavior. For one Berlin-based cellist, playing with the system was a relatively comfortable experience. They asked him if we could do a quick initial piece just to check the volume balance between him and the system, he played with the system without pause for nearly an hour. Such a reaction is unusual, with most players preferring to play with the system for a much shorter period of time, in most cases no longer than twenty minutes.

In the follow-up conversation, he found that he liked playing with the system, but gave some curious reasons for his preference. What he enjoyed most about the interaction was the feeling that the system did not "really listen," as has put it. I was perplexed by this seemingly backward ended compliment at first, but he explained his irritation with players, especially younger musicians, who tend to immediately respond to his playing with material that references (i.e. reproduction or mimicry) what he just played. By contrast, the system's inability to do so made him feel more comfortable.

The preference for defiant or resistive playing is all the more intriguing in the experience of another Berlin-based musician, this time a trumpet player. As discussed in section 3.4., when a player expresses a desire or interest in more or less aggressive playing, I experimented with varying microphone setups. In three pieces with this trumpet player, each of approximately ten minutes, three configurations were attempted: with two microphones on the trumpet player, one on the trumpet player and one on the system, and two on the system.

Surprisingly, he preferred the configuration in which both microphones were aimed at the loudspeaker, away from the bell of his trumpet. Again, this preference, like that of the cellist, can be seen as a preference for a kind of musical interactivity which is more resistive than supportive. He preferred a manner of playing in which the other player would be listening closely at all times, but would not necessarily announce and demonstrate their awareness of the other player by immediately and unambiguously reacting to each new idea.

Like the cellist, he explained this preference as a capacity of interaction habit often avoided by younger players. He explained that when he was a younger improviser, whether he too used to play in a much more reactive manner. However, as he became older and more experienced, he reduced this resistance in his playing and, similarly, sought to work with players whose modes of interaction with other players were less obvious, or more "opaque," as Young might describe it [12].

4.4. Discussion

Unfortunately, commentary generated from extensive tests of this system with a variety of players ultimately gives no clear insight into the ideal free improviser. Critical evaluations of this system by a wide variety of improvisers reveals a similarly broad range of opinions on how well it interacts in supportive and oppositional behaviors. While the last two individuals discussed in detail above showed a preference for greater defiance and less reactivity in the system, many other individuals asked to critique the system did not agree with this assessment. In the end, data from this study does not indicate conclusively whether or not the system should be designed to be more supportive or more aggressive in its interactions with human improvisers.

However, as I have previously argued [14], commentary elicited in tests of this system have a value which goes far beyond simply refining the design of interactive music systems. Asking players to critique the system is unusual, with most players preferring to play with the system for a much shorter period of time, in most cases no longer than twenty minutes.

Generally speaking, critical commentary on this system is useful for complicating any simple understanding of behaviors or dispositions such as "sensitivity," "supportive," "aggressive," or "defiant" as descriptors for the behavior of an improviser, whether human or machine. As discussed, this system is built to interact with human players like free improvisers elicits a discussion of what conduct is preferred in these interactions. In other words, the confrontation with a non-human musician brings improvisers to discuss the sense of ethics which they enact in how they listen and react (or not) to other performers.

Field research for this project would not have been possible without financial support from the Mellon Foundation, Fulbright Journalism Fellowship (Germany), the Berlin Program for Advanced German and European Studies, and the Austrian Academic Exchange Service for publication of this paper, and to Adrian Freed, Benjamin Brinner and anonymous reviewers for their helpful comments.

6. REFERENCES