Asymmetric synthesis of \(N\)-tosyl amino acids from \(N\)-sulfinyl \(\alpha\)-amino-1,3-dithioketals

Franklin A. Davis,* Tokala Ramachandar, Jing Chai, and Hiu Qiu

Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
E-mail: fdavis@temple.edu

This paper is dedicated to Cynthia A. Maryanoff and Bruce E. Maryanoff to honor their outstanding contributions to science and service to the profession

Abstract

Hydrolysis of diastereomERICALLY pure \(N\)-sulfinyl \(\alpha\)-amino-1,3-dithianes with 1,3-dibromo-5,5-dimethylhydantoin gives \(N\)-tosyl \(\alpha\)-amino aldehydes which when subjected to a Pinnick-type oxidation gave \(N\)-tosyl \(\alpha\)-amino acids without epimerization.

Keywords: Sulfinimine (\(N\)-sulfinyl imine); asymmetric synthesis; \(N\)-tosyl \(\alpha\)-amino acids; \(N\)-sulfinyl \(\alpha\)-amino-1,3-dithioketals.

Introduction

\(\alpha\)-Amino aldehydes and ketones are valuable chiral building blocks widely used in asymmetric synthesis.\(^1^,\,2\) They have been employed in the enantioselective synthesis of \(\alpha\)-amino alcohols, 1,2-diamines, allylic amines, heterocycles, and natural products. Most often \(\alpha\)-amino aldehydes and ketones are prepared from \(N\)-protected \(\alpha\)-amino acids and are limited by the availability of the starting material.\(^1\) Because these \(\alpha\)-amino carbonyl compounds are notoriously unstable, their formation and subsequent transformations require a suitable \(N\)-protecting group for stabilization to inhibit racemization and self-condensation.\(^1^,\,2^,\,3\)

\(N\)-Sulfinyl \(\alpha\)-amino-1,3-dithioketals \(2\) (\(R' = \text{alkyl aryl, H}\)), prepared by the addition of 2-lithio-1,3-dithianes to enantiopure sulfinimines (\(N\)-sulfinyl imines) \(1\), are new sulfinimine-derived chiral building blocks for the asymmetric synthesis of \(\alpha\)-amino aldehydes \(5\) and ketones \(6\) (Scheme 1).\(^4^,\,7\) Removal of the thioketal group in \(2b\) was selectively accomplished using the Stork reagent \(\text{PhI(O}_2\text{CCF}_3)_2\), affording the \(N\)-sulfinyl \(\alpha\)-amino ketone \((S,S)-6\) without epimerization.\(^4\) Similar treatment of \(2a\) resulted in decomposition, but with 1,3-dibromo-5,5-dimethylhydantoin (DBDMH, \(4\)) it gave the \(N\)-tosyl \(\alpha\)-amino aldehyde \((S)-5\), again without epimerization.\(^5\) The fact that acid hydrolysis of \(2\) gives the free amine \(3\) while leaving the carbonyl group protected offers unique opportunities for functional group manipulation.\(^4\) These
new chiral building blocks have been employed in asymmetric syntheses of hydroxyprolines such as (-)-3-hydroxy-3-methylproline, 1,2-amino alcohols, allylamines, the 2,3-disubstituted piperidine (L-733,060), and the amino ketone (-)-cathinone.

\[\text{(S)-1} \quad R = \text{alkyl, aryl} \]

\[\text{(S\textsubscript{S},S)-2a: } R' = \text{H} \]
\[\text{(S\textsubscript{S},S)-2b: } R' = \text{alkyl, aryl} \]

\[\text{(S)-3} \]

\[\text{(S)-5} \]

\[\text{(S\textsubscript{S},S)-6} \]

Scheme 1. Synthesis of α-amino-aldehydes and ketones.

Although the synthesis of α-amino acids from α-amino aldehydes has occasionally been described, this method has received little attention. Undoubtedly the reason for this is that α-amino aldehydes are usually prepared from α-amino acids. However, a procedure to prepare α-amino acids from α-amino-1,3-dithianes would have considerable merit because of the structural diversity of available sulfinimine-derived α-amino-1,3-dithianes. We describe here a simple method for the asymmetric synthesis of N-tosyl α-amino acids from N-tosyl α-amino aldehydes using a Pinnick-type oxidation.
Results and Discussion

The addition of 1.5 equivalents of a preformed solution of 2-lithio-1,3-dithiane at -78 °C to (S)-(+) -N-(benzylidene)-p-toluenesulfinamid e 7a, (S)-(+) -N-(trifluoromethyl-benzylidene)-p- toluenesulfinamide 7b, (S)-(+) -N-(isobutylidene)-p-toluenesulfinamide 7c, or (S)-(+) -(2,2-dimethylpropylidene)-p-toluenesulfinamide 7d, readily gave the corresponding N-sulfinyl α-amino-1,3-dithianes (SS)-(+) -8a and (SS)-(+) -8b, (SS)-(+) -8c, and (SS)-(+) -8d (Scheme 2). The diastereoselectivities, determined by 1H-NMR on the crude reaction mixtures, were good to excellent (72-96% de) and the yields of the major diastereoisomers, isolated by flash chromatography, were good (Table 1). It is interesting to note that the highest de’s were found for addition of the 2-lithio-1,3-dithiane to the bulky tert-butyl sulfinimine (S)-(+) -7d and lowest for the smaller iso-propyl sulfinimine (S)-(+) -7c (Table 1, compare entries 3 and 4).

\[
\text{Scheme 2. Synthesis of } N\text{-sulfinyl } \alpha\text{-amino-1,3-dithianes.}
\]

\[
\text{Table 1. Synthesis of } N\text{-sulfinyl } \alpha\text{-amino-1,3-dithianes } (SS)-(+) -8
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Sulfinimine 7 (R =)</th>
<th>% dea</th>
<th>(+)-8, % yieldb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7a (R = Ph)</td>
<td>82</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>7b (R = p-CF\textsubscript{3}Ph)</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>7c (R = i-Pr)</td>
<td>72</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>7d (R = CMe\textsubscript{3})</td>
<td>96</td>
<td>72</td>
</tr>
</tbody>
</table>

a Determined by 1H- NMR on the crude reaction mixture.

b Isolated yield of pure major diastereoisomer.

The N-sulfinyl α-amino-1,3-dithianes 8 were hydrolyzed by treatment with 2 equivalents of DBDMH 4 in 80% acetone at -20 °C. The solution quickly turned red and then faded to yellow-
orange after a few minutes. The reaction was quenched after about 10 min by addition of aqueous sodium sulfite to afford the crude \(N\)-tosyl aldehydes \((S)\)-9 as colorless oils. Since the aldehydes were unstable to chromatographic purification they were used in crude form for the next reactions.

The enantiomeric purity of the crude \(N\)-tosyl amino aldehydes 9 were determined by reduction with 5 equiv. of \(\text{NaBH}_4\) to give the known 1,2-amino alcohols \((S)\)-\((+)-10\), which were transformed into their Mosher esters (Scheme 3). The enantiomeric purity of amino alcohol \((S)\)-\((+)-10a\) is estimated to be >97% ee based on its Mosher ester and by comparison its specific rotation to a literature value for this amino alcohol.\(^{10}\) Therefore the enantiomeric purity of the corresponding \(\alpha\)-amino aldehyde \(9a\), must be at least 97% ee. Similar results were found for 9c and 9d. These results confirm earlier studies that demonstrated that the \(N\)-tosyl group is an excellent protecting group for inhibiting base catalyzed epimerization in \(\alpha\)-amino aldehydes, because it stabilizes anions at nitrogen.\(^{7}\)

\[
\begin{align*}
\text{(S,S)-(+)-8} & \quad \xrightarrow{\text{1) 2 equiv DBDMH 4, 2) \text{Na}_2\text{SO}_3, acetone, H}_2\text{O, -20 °C}} \quad \text{(S)-9} \\
\text{NaBH}_4 & \quad \text{ (> 97% ee)} \\
\text{(S)-(+)10a: R = Ph (70%)} & \quad \text{(S)-(+)10c: R = i-Pr (58%)} \\
\text{(S)-(+)10d: R = t-Bu (42%)}
\end{align*}
\]

Scheme 3. Reduction of \(N\)-tosyl \(\alpha\)-amino aldehydes.

A Pinnick-type oxidation was used to oxidize the crude aldehydes \((S)\)-9 to the corresponding \(N\)-tosyl amine acids, which were isolated as their methyl esters 12 (Scheme 4).\(^{11}\) The crude \(N\)-tosylamino aldehydes 9 were converted into the amino acids 11 under standard conditions, \(i.e.\) \(\text{NaClO}_2\), \(\text{NaH}_2\text{PO}_4\) and 2-methyl-2-butene in \(\text{THF: t-BuOH: H}_2\text{O}\) at 0 °C. The crude amino acids were treated with (trimethylsilyl)diazomethane solution to give the amino acid methyl esters 12 in good yield for the four-step sequence (Scheme 4). The enantiomeric purities of the amino-acid methyl esters were excellent, as determined by comparison with literature values and conversion of the acids into the diastereomeric amides with \((R)\)-(+)\-\(\alpha\)-methylbenzylamine – and the other diastereomeric amide was not detected by \(^{1}\text{H-NMR.}\)

Conclusions

Hydrolysis of N-sulfinyl α-amino-1,3-thianes 8 with 1,3-dibromo-5,5-dimethylhydantoin 4 affords N-tosyl α-amino aldehydes 9 which were oxidized to N-tosyl α-amino acids 11 which were isolated as their methyl esters 12. The overall yield for the four-step sequence, 8 to 12 is very good, and epimerization was not detected. This protocol represents a valuable new method for the asymmetric synthesis of structurally diverse α-amino acids because of the great structural diversity of available sulfinimines. Furthermore, Rapoport has demonstrated the utility of N-arylsulfonyl protecting groups in many transformations of amino acids, including modifications of the carboxyl group to give α-amino ketones. Removal of the N-tosyl group is easily effected without epimerization, via reduction with sodium naphthalide or cleavage with HBr in HOAc. In our studies we have found that Na/NH₃ (liq.) is particularly effective for removal of the N-p-toluenesulfonyl protecting group.

Experimental Section

General. Chromatography was performed on silica gel, Merck grade 60 (230-400 mesh). TLC plates were visualized with UV, in an iodine chamber, or with phosphomolybdic acid, unless otherwise noted. 1H- and 13C- NMR spectra were recorded at 400 and 100 MHz, respectively. Unless stated otherwise, all reagents were purchased from commercial sources and used without additional purification. The sulfinimines 7a, 7b, 7c, 7d were prepared as previously described. RT denotes room temperature.

General procedure for addition of 2-lithio-1,3-dithiane to sulfinimines (S_S,S)-(+)-$N(p$-toluenesulfinyl)-2-phenylaminomethyl-1,3-dithiane 8a

In a 50 mL, oven dried, two-neck, round-bottomed flask equipped with a magnetic stirring bar, a rubber septum and an argon- filled balloon was placed 1,3-dithiane (0.37 g, 3.08 mmol, Aldrich) in THF (20 mL). The solution was cooled to -20 °C and n-BuLi (1.64 mL, 4.11 mmol, 2.5 M in hexane) was added slowly. After 1.5 h, the resulting solution was cooled to -78 °C and added via cannula to a -78 °C solution of sulfinimine (+)-7a (0.5 g, 2.05 mmol) in THF (20 mL). The reaction was stirred for 20 min. and quenched at -78 °C by addition of sat. NH$_4$Cl solution (3 mL). To the reaction mixture was added EtOAc (25 mL), the aqueous phase was washed with brine (10 mL), dried (Na$_2$SO$_4$), and concentrated. Flash chromatography (EtOAc/hexane, 2:8) afforded 0.545 g (73%) of a white crystalline solid, mp 172-174 °C (dec.); [α]$_{20}^D$ +69.8 (c 1.0, CHCl$_3$); IR (KBr) 3260, 3040, 2941, 1418 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 7.40 (d, J = 8.0 Hz, 2 H), 7.07 (m, 7 H), 5.05 (d, J = 5.5 Hz, 1 H), 4.65 (t, J = 6.5 Hz, 1 H), 4.25 (d, J = 6.5 Hz, 1 H), 2.80-2.76 (m, 2 H), 2.72 (m, 2 H), 2.23 (s, 3 H), 2.11 (m, 1 H), 1.92-1.83 (m, 1 H); 13C NMR (CDCl$_3$) δ 141.1, 140.2, 129.5, 129.0, 128.4, 127.7, 125.9, 125.3, 58.0, 53.6, 29.5, 28.4, 25.6, 21.6. HRMS Calcd for C$_{18}$H$_{21}$NOS$_3$Na (M + Na) 386.0682. Found 386.0685.

(S_S,S)-(+)-$N(p$-Toluenesulfinyl)-2-(4-trifluoromethylphenylaminomethyl)-1,3-dithiane 8b.

Flash chromatography using EtOAc/hexane (3:7) gave 75% of a white solid, mp 139-140 °C; [α]$_{20}^D$ +70.4 (c 0.33, CHCl$_3$) IR (KBr) 3207, 2941, 1418 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 7.40 (d, J = 8.0 Hz, 2 H), 7.07 (m, 7 H), 5.05 (d, J = 5.5 Hz, 1 H), 4.65 (t, J = 6.5 Hz, 1 H), 4.25 (d, J = 6.5 Hz, 1 H), 2.80-2.76 (m, 2 H), 2.72 (m, 2 H), 2.23 (s, 3 H), 2.11 (m, 1 H), 1.92-1.83 (m, 1 H); 13C NMR (CDCl$_3$) δ 141.1, 140.2, 129.5, 129.0, 128.4, 127.7, 125.9, 125.3, 58.0, 53.6, 29.5, 28.4, 25.6, 21.6. HRMS Calcd for C$_{19}$H$_{21}$F$_3$NOS$_3$ (M + H) 432.0737. Found 432.0747.

(S_S,S)-(+)-$N(p$-Toluenesulfinyl)-2-(1-amino-2-methylpropyl)-1,3-dithiane 8c.

Flash chromatography with EtOAc/hexane (3:7) gave 70% of a white solid, mp 94-96 °C; [α]$_{20}^D$ +51.8 (c 0.33, CHCl$_3$) IR (KBr) 3207, 2931, 1429, 1037 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 7.83 (d, J = 7.5 Hz, 2 H), 7.30 (d, J = 7.5 Hz, 2 H), 4.38 (d, J = 4.5 Hz, 1 H), 4.13 (d, J = 9.5 Hz, 1 H), 3.43-3.33 (m, 1 H), 2.97-2.83 (m, 4 H), 2.24 (s, 3 H), 2.17-2.10 (m, 1 H), 2.07-2.00 (m, 1 H), 1.94-1.84 (m, 1 H), 0.99 (d, J = 3.0 Hz, 3 H), 0.98 (d, J = 2.5 Hz, 3 H); 13C NMR (CDCl$_3$) δ 142.8, 141.2, 129.3, 139.5, 141.4, 143.7. HRMS Calcd for C$_{19}$H$_{21}$F$_3$NOS$_3$ (M + H) 432.0737. Found 432.0747.
126.2, 64.9, 54.4, 30.7, 30.4, 30.2, 26.2, 21.3, 20.5, 18.5. Anal. Calcd for C₁₅H₂₃NOS₃: C, 54.67; H, 7.03; N, 4.25. Found: C, 54.65; H, 7.06; N, 4.29%.

(S₈,S)-(+)–N-(p-Tolunesulfinyl)-2-(1-amino-2,2-dimethylpropyl)-1,3-dithiane 8d. Flash chromatography with EtOAc/hexane (3:7) gave 72% of a colorless oil, [α]²⁰_D +15.4 (c 1.91, CHCl₃); IR (KBr) 3219, 3040, 2955, 2899, 1473 cm⁻¹; ¹H NMR (CDCl₃) δ 7.91 (d, J = 8.0 Hz, 2 H), 7.26 (d, J = 8.0 Hz, 2 H), 4.49 (s, 1 H), 4.20 (d, J = 9.3, 1 H), 3.29 (d, J = 9.3 Hz, 1 H), 2.88 (m, 4 H), 2.36 (s, 3 H), 1.92 (m, 2 H), 1.03 (s, 9 H); ¹³C NMR (CDCl₃) δ 143.8, 141.6, 129.7, 126.8, 70.4, 53.8, 36.1, 32.3, 31.1, 28.1, 26.3, 21.7. HRMS Calcd for C₁₆H₂₅NOS₃ (M + H) 344.1176. Found 344.1181.

General procedure for hydrolysis of α-amino 1,3-dithianes to N-tosyl α-amino aldehydes using 1,3-dibromo-5,5-dimethylhydantoin (DBDMH, 4)
In a 50 mL round-bottomed flask equipped with a magnetic stirring bar and a rubber septum was placed (+)–8a (0.5 g, 1.377 mmol) in acetone (20 mL) at 25 °C, and this solution was added with stirring to a solution of 1,3-dibromo-5,5-dimethylhydantion (DBDMH, 4) (0.787 g, 2.754 mmol) in 80% acetone (14 mL) at -20 °C. The solution quickly became red, but soon faded to yellow-orange, and was stirred for 10 min. The solution was then shaken with a mixture of saturated aq. sodium sulfite (10 mL) and 1:1 hexane-dichloromethane (10 mL). The organic phase was washed with aqueous sodium bicarbonate (12 mL), water (12 mL), then brine (12 mL), dried (Na₂SO₄), and concentrated to give a colorless oil that was used directly in the next step.

General procedure for the reduction of α-amino aldehydes using NaBH₄. (S)-(+)–N-(2-hydroxy-1-phenyl-ethyl)-4-methyl-benzenesulfonamide 10a
In a 25-mL, oven-dried, single-necked, round-bottomed flask equipped with a magnetic stirring bar, rubber septum, and argon balloon, was placed the crude aldehyde 9a (0.08 g, 0.276 mmol) in EtOH (15 mL). The solution was cooled to 0 °C and NaBH₄ (0.125 g, 3.321 mmol) was added. After 10 min, the reaction mixture was quenched by addition of saturated aqueous NH₄Cl solution (10 mL) at 0 °C and diluted with EtOAc (10 mL). The aqueous phase was extracted with EtOAc (2 x 10 mL), and the combined organic phases were washed with brine (15 mL), dried (Na₂SO₄), and concentrated to give a colorless oil that was used directly in the next step.

(S)-(+)–N-(1-Hydroxymethyl-2-methylpropyl)-4-methylbenzenesulfonamide 10c. Flash chromatography with EtOAc/hexane (4:6) gave 0.0450 g (70%) of a white solid, mp 89-90 °C [lit.¹⁶ mp 88-89 °C]; [α]²⁰_D +30.7 (c 0.5, CHCl₃), [lit.¹⁶ [α]²⁵_D +29.4 (c, 0.837, CHCl₃); IR (KBr) 3531, 3302, 2972, 1162 cm⁻¹; ¹H- NMR (CDCl₃) δ 7.82 (d, J = 4.5 Hz, 2 H), 7.38 (d, J = 4.5 Hz,
2 H), 4.81 (d, J = 5.8 Hz, 1 H), 3.60-3.62 (m, 2 H), 3.08 (m, 1 H), 2.49 (s, 3 H), 1.82-1.92 (m, 1 H), 0.83 (d, J = 3.0 Hz, 3 H), 0.80 (d, J = 3.0 Hz, 3 H); 13C NMR (CDCl$_3$, δ143.5, 137.5, 129.7, 127.2, 63.1, 60.9, 29.4, 29.6, 21.5, 19.1, 18.4; Anal. Calcd for C$_{12}$H$_{19}$NO$_3$: C, 56.00; H, 7.44; N, 5.44. Found: C, 55.94; H, 7.47; N, 5.45%.

General procedure for the formation of amino acids. (S)-(+) Methyl-2-(p-toluenesulfonyl)amino-2-phenyl acetate 12a.

In a 50-mL, oven-dried, single-necked, round-bottomed flask equipped with a magnetic stirring bar and a glass stopper was placed the crude aldehyde 9a (0.225 g, 0.778 mmol) in THF: t-BuOH (1:1, 15 mL). The solution was cooled to 0 bar and a glass stopper was placed the crude aldehyde

In a 50-mL, oven-dried, single-necked, round-bottomed flask equipped with a magnetic stirring

toluenesulfonyl)amino-2-phenyl acetate 12a

Flash chromatography with EtOAc/hexane (3:7) gave 0.032 g (42%) of a light yellow solid, mp 111-112 °C; [α]$^{20}_D +10.3$ (c 1.45, CHCl$_3$); IR (KBr) 3471, 3292, 2958, 2924, 1325, 1154 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 7.85 (d, J = 6.0 Hz, 2 H), 7.37 (d, J = 6.0 Hz, 2 H), 4.96 (d, J = 6.0 Hz, 1 H), 3.67 (m, 2 H), 3.07 (m, 1 H), 2.49 (s, 3 H), 2.01 (s, 1 H), 0.86 (s, 9 H); 13C NMR (CDCl$_3$) δ 143.9, 138.0, 130.0, 127.7, 64.4, 62.7, 34.4, 27.3, 21.9. Anal. Calcd for C$_{13}$H$_{21}$NO$_3$: C, 57.54; H, 7.80; N, 5.16. Found: C, 57.52; H, 7.82; N, 5.19%.

(S)-(+) Methyl-2-(p-toluenesulfonyl)amino-2-phenyl acetate 12b.

Flash chromatography (EtOAc/hexane, 3:5:6.5) afforded 0.137 g (52%) of 12a as a white solid, mp 132 °C [lit.17 mp 131-133 °C]; [α]$^{20}_D +101.6$ (c, 0.52, CHCl$_3$), [lit.17 [α]$^{25}_D +102.0$ (c, 1.12, CHCl$_3$); IR (KBr) 3255, 1742, 1084 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 7.4 (d, J = 8.1 Hz, 2 H), 7.38-7.21 (m, 7 H), 5.72 (d, J = 7.8 Hz, 1 H), 5.13 (d, J = 7.8 Hz, 1 H), 3.61 (s, 3 H), 2.42 (s, 3 H); 13C NMR (CDCl$_3$) δ 172.1, 143.9, 136.4, 135.1, 130.1, 129.7, 128.8, 128.5, 127.1, 59.6, 53.2, 21.2. HRMS Calcd for C$_{16}$H$_{17}$NO$_4$SNa (M + Na)$^+$ 342.0775. Found 342.0773.

(S)-(+) Methyl-2-(p-toluenesulfonyl)amino-2-(4-trifluoromethyl-phenyl)-acetate 12c.

Flash chromatography EtOAc/hexane (4:6) gave 44% of a white solid, mp 78 °C [lit.17 mp 77-78 °C]; [α]$^{20}_D +15.2$ (c, 0.91, CHCl$_3$), [lit.17 [α]$^{25}_D +15.6$ (c, 0.89, CHCl$_3$); IR (KBr) 3247, 1723, 1092 cm$^{-1}$; 1H NMR
(CDCl$_3$) δ 7.65 (d, $J = 8.0$ Hz, 2 H), 7.21 (d, $J = 8.0$ Hz, 2 H), 4.98 (d, $J = 8.4$ Hz, 1 H), 3.69 (d, $J = 8.4$ Hz, 1 H), 3.39 (s, 3 H), 2.38 (s, 3 H), 2.02-1.93 (m, 1 H), 0.94 (d, $J = 6.7$ Hz, 3 H), 0.87 (d, $J = 6.7$ Hz, 3 H); 13C NMR (CDCl$_3$) δ 171.0, 142.9, 136.8, 129.8, 126.1, 61.2, 52.1, 32.1, 21.8, 19.4, 18.6. Anal. Calcd for C$_{13}$H$_{19}$NO$_4$: C, 54.72; H, 6.71; N, 4.91. Found: C, 54.69; H, 6.88; N, 4.89%.

(S)-(+)–Methyl-3,3-dimethyl-2-(p-toluenesulfonyl)-amino-butyrate 12d. Flash chromatography EtOAc/hexane (4:6) gave 40% of a white solid, mp 108-110°C; [α]$_{20}^D$ +42.1 (c, 0.7, CHCl$_3$); IR (KBr) 3250, 1732, 1449, 1088 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 7.69 (d, $J = 8.0$ Hz, 2 H), 7.23 (d, $J = 8.0$ Hz, 2 H), 5.08 (d, $J = 12$ Hz, 1 H), 3.57 (d, $J = 12$ Hz, 1 H), 3.33 (s, 3 H), 2.41 (s, 3 H), 0.94 (m, 9 H); 13C NMR (CDCl$_3$) δ 171.1, 144.1, 136.8, 129.9, 127.8, 64.6, 52.1, 34.9, 26.6, 21.9. Anal. Calcd for C$_{14}$H$_{21}$NO$_4$: C, 56.16; H, 7.07; N, 4.68. Found: C, 56.14; H, 7.12; N, 4.71%.

Acknowledgements

This work was supported by NIGMS (GM 51982 and 57870) and Boehringer Ingelheim Pharmaceuticals, Inc.

References

