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so that arg. <w ——%) + arg. <,z + Z—Z> =
This at once shews that, whatever be the value of % and of g, the points 4,

E are homologous, and likewise the points B, D. Hence to obtain a corner
homologous to a given corner we start from the corner, describe the edge of
the polygon beginning there, then describe in the same direction* the conju-
gate edge: the extremity of that edge is a homologous corner.

The process may now be reapplied, beginning with the last point; and it
can be continued, each stage adding one point to the cycle, until we either
return to the initial point or until we are met by an edge of the second kind.
In the former case we have a completed cycle, which may be regarded as a
closed cycle. In the latter case we can proceed no further, as edges of the
second kind are not ranged in conjugate pairs; but, resuming at the initial
point we apply the process with a description in the reverse direction until
we again arrive at an edge of the second kind : again we have a cycle, which
may be regarded as an open cycle.

In the case of a closed cycle, if one of the included points be of the first
category, then all the points are of the first category: the cycle itself is then
said to be of the first category. If one of the points be of the second category,
then since no edge of the second kind is met in the description, all the edges
met are of the first kind ; and therefore all the points, lying on the axis of x
and being the intersections of edges of the first kind, are of the second
category: the cycle itself is then said to be of the second category.

Open cycles will contain points of the third category: they may also
contain points of the second category for points both of the second and of
the third categories lie on the axis of «, and homology of the points does not
imply conjugacy of all edges of which they are extremities. Such cycles are
said to be of the third category.

It thus appears that the cycles can be derived when the arrangement in
conjugate pairs of edges of the first kind is given; and it is easy to see that

the number of open cycles is equal to the number of edges of the second
kind.

We may take one or two examples. For a quadrilateral, in which
the conjugate pairs are 1, 4; 2, 3—the numbers being
as in the figure—we have by the above process 4, 4B,
DA, A: that is, 4 is a cycle by itself. Then B, BC, CD,
D, DA, AB, B: that is, B and D form a cycle; and then
C, D, BC, C, that is, C is a cycle by itself. The cycles
are therefore three, namely, 4; B, D; C. Fig. 112.

* Thisis necessary : the direction is easily settled for a complete polygon the sides of which
are described in positive or in negative direction throughout.
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For a hexagon, in which the conjugate pairs are 1,5; 2,4; 3,6, the
cycles are two, namely, 4, F, D, ¢ and B, E. If the conjugate pairs be

Fig. 113.

1, 6; 2, 5; 3, 4, the cycles are four, namely, 4; B, F'; ¢, £; D. If the
conjugate pairs be 1, 4; 2, 5; 3, 6 the cycles are two, namely, 4, C, £,
B, D, F.

For a pentagon, with one edge of the second kind as in the figure and

B (o]
Fig. 114.

having 1, 3; 4, 5 as the conjugate pairs, the cycles are three, namely,
E; A, D; B, C; the last being open and of the third category.

For a quadrilateral as in the figure, having three corners on the axis of «
and 1, 2; 3, 4 as the arrangement of its conjugate
pairs, the cycles are D; A, C'; B; the last two
being of the second category.

We have now to consider the angles of the
polygons taken internally. It is evident that at
any corner of the second category, the angle is
zero, for it is the angle between two circles meeting
on their line of centres; and that at any corner of
the third category the angle is right. There therefore remain only the
angles at corners of the first category. Let A4,, 4,,..., A, be the corners
in a cycle of the first category and denote the angles by the same letters.

Pig. 115.
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Since 4, and A4, are homologous corners, they are extremities of conjugate
edges. Apply to the plane, in the vicinity of A4,, the substitution which
changes the edge ending in A, to its conjugate ending in 4,: then the
point A4, is transferred to the point A4,; one edge at A, coincides with its
conjugate at 4, and the other edge at A4, makes an angle A,

A, with it, because of the substitution which conserves As -
angles. The latter edge was the edge which followed A4, ’Y

in the cycle for the derivation of A;: we take its conju-
gate ending in 4,;, and treat these and the points A4, and
A, as before for A, and A4, and their conjugate edges, namely, by using the

substitutions transforming conjugate edges and passing from 4, to 4, and
then those from 4, to 4,.

Fig. 116.

Proceeding in this way round the cycle, we shall have

(1) a series of lines at the point, each line between two angles being
one of the conjugate edges on which the two corners lie:

(2) the angles corresponding to the corners taken in cyclical order.

Hence after n such operations we shall again reach an angle 4,. If the edge
do not coincide with the first edge, we repeat the set of » operations: and
S0 on.

Now all these substitutions lead to the construction of the various regions
meeting in 4, which are to occupy all the plane round 4, and no two of
which are to contain a point which does not lie on an edge. Hence
after the completion of some set of operations, say the pth set, the
edges of A, will coincide with their edges of the first angle 4,; and
therefore

pd,+4,+ ...+ 4,)=2m,

so that A1+A2+..A+An=gg.

Hence the sum of the angles at the corners, in a cycle of the first category,
1s a submultiple of 2.

Further, if ¢ be the number of polygons at 4, we have
np =q.

COROLLARY 1. For a cycle of the second category—it is a closed cycle—
both p and q are infinite.

The cycle contains only a finite number of corners, because the polygon
has only a finite number* of edges: as each corner is of the second category,

* Tf the number be infinite, the edges must be infinitesimal in length unless the perimeter of
each of the polygons is infinite : each of these alternatives is excluded.

The reason for finiteness (§ 282) in the number of fundamental substitutions in the group
is now obvious: their number is one-half of the number of edges of the first kind.
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the angle is zero: and therefore the repetition of the set of operations can be
effected without limit. Hence p is infinite; and, as n polygons at a corner
are given by each set of operations, the number ¢ of polygons is infinite.

CoroLLARY 2. Corresponding to every cycle of the first category, there is
a relation among the fundamental substitutions of the group.

Let fi, be the substitution interchanging the conjugate edges through 4,
and A,; f, the substitution interchanging the conjugate edges through 4,
and A,; and so on. Let U denote

St S S .fn—1,n_1 (2);
then vr@)==

For U is the substitution which reproduces the polygon with the angle
A, at A,; and this substitution is easily seen, after the preceding explanation,
to be periodic of order p. Moreover, this substitution U is elliptic.

288. The following characteristics of the fundamental region have now
been obtained :

(1) It is a convex polygon, the edges of which are either arcs
of circles with their centres on the axis of « or are portions
of the axis of «:

(i1) The edges of the former kind are even in number and can be
arranged in conjugate pairs: there is a substitution for which
the edges of a conjugate pair are congruent; if this sub-
stitution change one edge @ of the pair into a’, it changes
the given region into the region on the other side of o’:

(iii) The corners of the polygon can be arranged in cycles of one or
other of three categories:

(iv) The angles at corners in a cycle of the second category are zero:
each of the angles at corners in a cycle of the third category
is right: the sum of the angles at corners in a cycle of the
first category is a submultiple of 2.

Let there be an infinite discontinuous group of substitutions, such that its
fundamental substitutions are characterised by the occurrence of the fore-
going properties in the edges and the angles of the geometrically associated
region : -and let the whole group of substitutions be applied to the region.

Then the half-plane on the positive side of the axis of # is covered: no
part is covered more than once, and no part is unassigned to regions. It is
easy to see in a general way how this given condition is satisfied by the
various properties of the regions. Since the edges of the first kind in
the initial region can be arranged in conjugate pairs, it is so with those
edges in every region: and the substitution, which makes them congruent,
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makes one of them to coincide with the homologue of the other for the
neighbouring region, so that no part is unassigned. No part is covered
twice, for the initial region is a normal convex polygon and therefore every
region is a normal convex polygon: the edges are homologous from region to
region, and form a common boundary. The angle of intersection with a
given arc is sufficient to fix the edge of the consecutive polygon: for an arc
of a circle, making on one side an assigned angle with a given arc and having
its centre on the axis, is unique. At every corner of any polygon, there will
be a number of polygons: the corners which coincide there are, for the
different polygons, the corners homologous with a cycle in the original
region: and the angles belonging to those corners fill up, either alone or
after an exact number of repetitions, the full angle round the point.

We have seen that the substitution, which passes from a polygon at a
point to the same polygon, after n polygons, reproduces the angular point
at the same time as it reproduces the polygon; the point is a fixed point
of an elliptic substitution. Similarly, if the point belong to a cycle of the
second category, n is infinite and the substitution does not change the point,
which is therefore a fixed point of the substitution; as the fixed point is on
the axis, the substitution is parabolic (§ 292).

The preceding are the essential properties of the regions, which are
sufficient for the division of the half-plane when a group is given, and
therefore by reflexion through the axis of @, they are sufficient for the
division of the other half-plane.

The position of corners of the first category, and the orientation of edges
meeting in those corners, are determinate when the group is supposed
given: within certain limits, half of the corners of the third category can
be arbitrarily chosen.

289. In the preceding investigation, the group has been supposed given:
the problem was the appropriate division of the plane. The converse problem
occurs when a fundamental region, with properties appropriate for the
division of the half-plane, is given: it is the determination of the group.
The fundamental substitutions of the group are those which transform an
edge into its conjugate, and they are to be real—conditions which, by
§ 258, are sufficient for their construction. The whole group of substitu-
tions is obtained by combining those that are fundamental. The complete
division of the half-plane is effected, by applying to each polygon in suc-
cession the series of fundamental substitutions and of their first inverses.

It is evident that a given division of the plane into regions determines
the group uniquely: but, as has already been seen in the general ex-
planation, the existence of a group with the requisite properties does not
imply a unique division of the plane.
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As an example, let the fundamental substitutions be required when a quadrilateral as
in Fig. 112, having 1, 2; 3, 4 for the conjugate pairs of edges, is given as a fundamental
region. The cycles of the corners are B; D; 4, C'; so that

2 P 2

=7 =7 a7
B=T, D=2T, 4+0="T,

where [, m, n are integers.

The simplest case has already been treated, § 284: there, /=2, m=w, n=3, 4=C; the
region is a triangle, really a quadrilateral with two
edges as conterminous arcs of the same circle. We D
shall therefore suppose this case excluded ; we take the
case next in point of simplicity, viz. {=2, 4=C. Then
AB and BC are conterminous arcs of one circle: we
shall take the centre of this circle to be the origin, its B
radius unity and B on the axis of y; then B is a fixed A c
point of the substitution, which changes 4B into BC. '
The substitution is

1
w= —;; o E
Fig. 117.

it is one of the two fundamental substitutions.

™

Evidently Azg, ADB= Let E be the centre of the circle 4D, and p its radius:

3

m

then OAE=", ODE=C -2, and so
n’ 2

S

p?+1—2p cos %: OE?=p? cosﬁgz,

1
. w m w . m\7
whence psin? —=cos— + ( cos? ~ — sin? — )",
m n n m

the negative sign of the radical corresponding to the case when D lies below ABC. The
‘radius p must be real and therefore

+

o=

1/
s

1=

we omit the case of m=w, and therefore n>2.
The fundamental substitution, which changes 4D into CD, has D and the complex con-

jugate to D for its fixed points: these points are +ipsin % The argument of the

multiplier is 2%11—, being the angle 4DC: hence the substitution is

.. LT
w—tpsin — z—1psin — 272
m m o m

I
LT RN
w--1p sma z+1p sm%

which reduces to
ke . m
208 —+p sin? —
m m

W = )
2 7
—Z+cos—
p m

where p has the value given by the above equation.
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This substitution, and the substitution w= —%, are the fundamental substitutions of
the group. The special illustration in § 284 gives
. m T
m=w, p=w, n=3, pSII]gﬁ:QCOSﬁ:l ;

the special form therefore is
w=z+1.

Taking cos ;—2=a, cos %: b, A=(a%+b2—-1)} we have p (1 —a?)=0b+A; the second fun-

damental substitution is
rw—SZ—ﬂAibp
T (A=D)eta’
It is easy to see that
T2=1, Sm=1, (T'S)"=1,
where Tz= —%; the complete figure can be constructed as in § 284.

An interesting figure occurs for m=4, n=6.

In the same way it may be proved that, if an elliptic substitution have re*% for its
common points and 26 for the argument of its multiplier, its expression is

w_Az—l—B
T+ D’
_sin(d-6) _sine _ _lsine _sin(64-0)
where A=t ="sne> ‘= rsme’ T snd

Taking now the more general case where B=2—E, D:2—Tr, A+C’=%E, let B (in
l m n

figure 112) be the point be®, and A the point a¢*. Then the substitution which transforms
AB into BC is the above, when §=8, r=>5b, =B, so that, if ¢ be ce"’,
asin(8—B)¢ +bsin B

’

a

b

giving two relations among the constants,

ceVi=

sin Be* +sin (84 B)

Similarly two more relations will arise out of the substitution which transforms €D
into DA. And three relations are given by the conditions that the sum of the angles at
A and C is an aliquot part of 2, and that each of the angles B and D is an aliquot part
of 2m.

290. All the substitutions hitherto considered have been real: we now
pass to the consideration of those which have complex coefficients. Let

oz + B

vz + 6

be such an one, supposed discontinuous: then the effect on a point is obtained
by displacing the origin, inverting with respect to the new position, reflecting
through a line inclined to the axis of # at some angle, and again displacing
the origin. The displacements of the origins do not alter the character of
relations of points, lines and curves: so that the essential parts of the
transformation are an inversion and a reflexion.
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Let a group of real substitutions of the character considered in the
preceding sections be transformed by the foregoing single complex substitu-
tion: a new group

aaz—i—B
az + 3 vz + 06
v+ jwr+f
cryz+8+d

will thus be derived. The geometrical representation is obtained through
transforming the old geometrical representation by the substitution

<°‘Z+/8 )
> Z >

v2+ 6

so that the new group is discontinuous.

The original group left the axis of # unchanged, that is, the line z=2,
was unchanged ; hence the substitutions

aaz+B

az+ 3 vz + 6
yz2+8’ az+f3
c—.*

ryz+3

will leave unchanged the line which is congruent with z=gz by the
substitution (E‘_Z;L@’ z) This line is
vz + 8
—8Z+B=_8030+Bo

v —a Vo2 — Oy
or it may be taken in the form
. -8
imaginary part of —0zt B _ 0
vz —a

It is a circle, being the inverse of a line; it is unaltered by the substitutions
of the new group, and it is therefore called* the fundamental circle of this
group. The group is still called Fuchsian (p. 606, note).

The half-planes on the two sides of the axis of # are transformed into the
two parts of the plane which lie within and without the fundamental circle
respectively : let the positive half-plane be transformed into the part within
the circle.

With the group of real substitutions, points lying above the axis of «
are transformed into points also lying above the axis of z, and points below
into points below : hence with the new group, points within the fundamental
circle are transformed into points also within the circle, and points without
into points without.

* Klein uses the word Hauptkreis.
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The division of the half-plane into curvilinear polygons is changed into a
division of the part within the circle into curvilinear polygons. The sides of
the polygons either are circles having their centres on the axis of , that is,
cutting the axis orthogonally, or they are parts of the axis of #: hence the
sides of the polygons in the division of the circle either are arcs of circles
cutting the fundamental circle orthogonally or they are arcs of the funda-
mental circle.

The division of the part of the plane without the circle is the trans-
formation of the half-plane below the axis of #, which is a mere reflexion
in the axis of @ of the half-plane above: thus the division is characterised by
the same properties as characterise the division of the part within the
fundamental circle. But when the division of the part within the circle
is given, the actual division of the part without it can be more easily
obtained by inversion with the centre of the fundamental circle as centre
and its radius as radius of inversion.

This process is justified by the proposition that conjugate complexes are

transformed by the substitution <%—£—’§ z) into points which are the in-

vz +38’
verses of one another with regard to the fundamental circle. For a system
of circles can be drawn through two conjugate complexes, cutting the real
axis orthogonally : when the transformation is applied, we have a system of
circles, orthogonal to the fundamental circle and passing through the two
corresponding points. The latter are therefore inverses with regard to
the fundamental circle.

This proposition can also be proved in the following elementary manner.

Let OC, the axis of #, be inverted, with 4 as the centre of inversion, into a circle :
P and @ be two conjugate complexes, and
let AP cut axis of # in C': let CQ cut the
diameter of the circle in B. Since OC bisects c
Pg, it bisects AR; and therefore the centre
of the circle is the inverse of R.

Let p and ¢ be the inverses of P and @:
join pg,gr. Then theangle pg@=CPQ=CQP,
and Agr=CRO: thus pgr is a straight line.
Also

gr @R _AP _ Ar

Ag AR~ AR Ap’
and pr =flg=ﬁ?=ﬁ .

Ap AR AR  Aq’ Fig. 118.
so that rp.rqg=Ar2

Thus p and ¢ are inverses of each other, relative to » and with the radius of the funda-
mental circle as radius. Transference of origin and reflexion in a straight line do not alter
these properties: and therefore p and ¢, the transformations of the conjugate I’ and @, are
inverses of one another with regard to the fundamental circle.
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Hence with the present group, constructed from an infinite discontinuous
group of real substitutions transformed by a single complex substitution, the
fundamental circle has the same importance as the axis of real quantities
in the group of real substitutions. It is of finite radius, which will be taken
to be unity : its centre will be taken to be the origin. The area within it is
divided into regions congruent with one another by the substitutions of the
group: the whole of the area is covered by the polygons, but no part is
covered more than once.

All the points, homologous with a given point z within the circle, lie
within the circle : each polygon contains only one of such a set of homologous
points.

The angular points of a polygon can be arranged in cycles which are
of three categories. The sum of the angles at points in a cycle of the first
category is unchanged by the substitution; it is equal to an aliquot part of
27, At points in a cycle of the second category each angle is zero : at points
in a cycle of the third category each angle is right.

In fact, all the properties obtained for the division of the plane into

polygons now hold for the division of the circle into polygons associated
with the group

az+ 3
az+ B cL«yz—l—‘é_l_b
yz+8 az+f ’
c'yz+8+d

provided we make the changes that are consequent on the transformation of
the axis of # into the fundamental circle.

The form of the substitution

az+ 3
w= ye+ 8’
which secures that the fundamental circle in the w-plane shall be of radius unity and
centre the origin, is easily obtained.

It has been proved that inverse points with respect to the circle correspond to conjugate
complexes; hence w=0 and w=w correspond to two conjugate complexes, say A and Ay,
and therefore
z2—A
z2—2Xy’
where |«|=1 because the radius of the fundamental circle is to be unity. The presence of
this factor « is equivalent to a rotation of the w-plane about the origin. As the origin
is the centre of the fundamental circle, the circle is unaltered by such a change:

and therefore, without affecting the generality of the substitution, we may take k=1,
so that now

W=k

Z—A
w= m;,
where A is an arbitrary complex constant. The substitution is not in its canonical form,
which however can at once be deduced.

291. It has been seen, in § 260, that, when any real substitution is para-
bolic or hyperbolic, then practically an infinite number of points coincide with
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the fixed point of the substitution when it is repeated indefinitely, whatever
be the point z initially subjected to the transformation ; this fixed point lies
on the axis of #, and is called an essential singularity of the substitution.
When we consider such points in reference to automorphic functions, which
are such as to resume their value when their argument is subjected to
the linear substitutions of the group, then at such a point the function
resumes the value which it had at the point initially transformed; that is,
in the immediate vicinity of such a fixed point of the substitution, the
function acquires any number of different values: such a point is an essential
singularity of the function. Hence the essential singularities of the group
are the essential singularities of the corresponding function.

Now all the essential singularities of a discontinuous group lie on the
axis of # when the group is real; the line may be or may not be a con-
tinuous line of essential singularity. If, for example, # be any such point
for the group of §§ 283, 284 which is characteristic of elliptic modular-
functions, then all the others for that group are given by

ax + b

cx +d’
where a, b, ¢, d are integers, subject to the condition ad —bc=1: and
therefore all the essential singularities are given by rational linear trans-
formations. For points on the real axis, this group is improperly dis-
continuous: and therefore for this group the axis of # is a continuous line
of essential singularity.
az + B
v
of the fundamental circle into regions, the essential singularities of the new
group are points on the circumference of the fundamental circle: the cir-
cumference is or is not a continuous line of essential singularity for the
function or the group¥, according as the group is properly or improperly
discontinuous for the circle.

Hence when we use the transformation ( z) to deduce the division

292. It is convenient to divide the groups into families, the discrimin-
ation adopted by Poincaré being made according to the categories of cycles of
angular points in the polygons into which the group divides the plane. The
group is of the

1st family, if the polygon have cycles of the 1st category only,

127 116 PPN 2nd . ,
133 Rt 3rd ,
b e 2nd and 3rd ............... ,

* Poincaré calls the group Fuchsian, both when all the coefficients are real and when they
arise from the transformation of such an infinite group by a single substitution that has imaginary
coefficients. A convenient resumé of his results is given by him in a paper, Math. Ann., t. xix,
(1882), pp. 553—564.
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5th family, if the polygon have cycles of the 1st and 3rd categories only,
BEh e 1st and 2nd...............
Tth e e all three categories.

Thus in the polygons, associated with groups of the 1st, the 2nd, and the 6th
families, all the edges are of the first kind; in the polygons associated with
groups of the remaining families, edges of the second kind occur.

A subdivision of some of the families is possible. It has been proved that
the sum of the angles in a cycle of the first category is a submultiple of 2.
If the sum is actually 27, the cycle is said to belong to the first sub-category:
if it be less than 27 (being necessarily a submultiple), the cycle is said to
belong to the second sub-category. And then, if all the cycles of the polygon
belong to the first sub-category, the group is said to belong to the first order
in the first family: if the polygon have any cycle belonging to the second
sub-category, the group is said to belong to the second order in the first
family.

It has been proved in § 288 that a corner belonging to a cycle of the
second category is not changed by the substitution which gives the conti-
guous polygons in succession; the corner is a fixed point of the substitution,
so that the substitution is either parabolic or hyperbolic. In his arrange-
ment of families, Poincaré divided the cycles of the second category into
cycles of two sub-categories, according as the substitution is parabolic or
hyperbolic : but Klein has proved* that there are no cycles for hyperbolic
substitutions, and therefore the division is unnecessary. The families of
groups, the polygons associated with which have cycles of the second
category, are the second, the fourth, the fifth and the seventh.

There is one very marked difference between the set of families, con-
sisting of the first, the second and the sixth, and the set constituted by
the remainder.

No polygon associated with a real group in the former set has an edge of
the second kind : and therefore the only points on the axis taken account of
in the division of the plane are the essential singularities of the group.
The domain of any ordinary point on the axis in the vicinity of each of the

.essential singularities is infinitesimal: and therefore the axis of & is taken
account of in the division of the plane only in so far as it contains essential
singularities of the group and the functions. This, of course, applies equally
to the transformed configuration in which the conserved line is the funda-
mental circle: and therefore, in the division of the area of the circle, its
circumference is taken account of only in so far as it contains essential
singularities of the groups and the functions.

But each polygon associated with a real group in the second set of
families has an edge of the second kind: the groups still have all their

* Math, Ann., t. x1, (1892), p. 132,
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essential singularities on the axis of # (or on the fundamental circle)
and at least some of them are isolated points; so that the domain of an
ordinary point on the axis is not infinitesimal. Hence parts of the axis of
« (or of the circumference of the fundamental circle) fall into the division of
the bounded space.

293. There is a method of ranging groups which is of importance in
connection with the automorphic functions determined by them.

The upper half of the plane of representation has been divided into
curvilinear polygons; it is evident that the reflexion of the division, in the
axis of real quantities, is the division of the lower half of the plane. Let the
polygon of reference in the upper half be R, and in the lower half be R/,
obtained from R, by reflexion in the axis of real quantities. Then, if the
group belong to the set, which includes the first, the second and the sixth
families, R, and R, do not meet except at those isolated points, which are
polygonal corners of the second category. But if the group belong to the
set which includes the remaining families, then R, and R, are contiguous
along all edges of the second kind, and they may be contiguous also at
isolated points as before.

In the former case R, and R, may be regarded as distinct spaces,
each fundamental for its own half-plane. Let R, have 2n edges which can
be arranged in n conjugate pairs, and let ¢ be the number of cycles all
of which are closed ; each point in one edge corresponds to a single point in
the conjugate edge. Let the surface included by the polygon R, be deformed
and stretched in such a manner that conjugate edges are made to coincide by
the coincidence of corresponding points. A closed surface is obtained. For
each pair of edges in the polygon there is a line on the surface, and for each
cycle in the polygon there is a point on the surface in which lines meet; and
the lines make up a single curvilinear polygon occupying the whole surface.
The process is reversible ; and therefore the connectivity of the surface is an
integer which may properly be associated with the fundamental polygon.

When two consecutive edges are conjugate, their common corner is a
cycle by itself. The line, made up of these two edges after the deformation,
ends in the common corner which has become an isolated point; this line
can be obliterated without changing the connectivity. The obliteration
annuls two edges and one cycle of the original polygon: that is, it diminishes
n by unity and ¢ by unity. Let there be 7 such pairs of consecutive edges.
The deformed surface is now occupied by a single polygon, with n — 1 sides
and ¢—r angular points; so that, if its connectivity be 2N 41, we have
§ 165)

2N=2+4+(n—r)—1-=(¢q—1)
=n+1-—gq.
The group may be said to be of class IV.
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In the latter case, the combination of R, and R, may be regarded as
a single region, fundamental for the whole plane. Let R, have 2n edges of
the first kind and m of the second kind, and let ¢ be the number of closed
cycles: the number of open cycles is m. Then R, has 2n edges of the first
kind and ¢ closed cycles; it has, in common with R,, the m edges of the
second kind and the m open cycles. The correspondence of points on the
edges of the first kind is as before. Let the surface included by R, and
R taken together be deformed and stretched in such a manner that con-
jugate edges coincide by the coincidence of corresponding points on those
edges. A closed surface is obtained. As the process is reversible, the
connectivity of the surface thus obtained is an integer which may properly
be associated with the fundamental polygon.

This integer is determined as before. For each pair of edges of the first
kind in either polygon, a line is obtained on the surface; so that 2n lines are
thus obtained, n from R, and n from R,. Each of the common edges of the
second kind is a line on the surface, so that m lines are thus obtained. The
total number of lines is therefore 2n +m. For each of the closed cycles
there is a point on the surface in which lines, obtained through the defor-
mation of edges of the first kind, meet: their number is 2¢, each of the
polygons providing ¢ of them. For each of the open cycles there is a point
on the surface in which one of the m lines divides one of the n lines arising
through R, from the corresponding line arising through R, : the number of
these points is m. The total number of points is therefore 2¢ + m.

The total number of polygons on the surface is 2. Hence, if the con-
nectivity be 2V + 1, we have (§ 165)

2N=2+2n+m— (29 +m)—2
= 2n — 2q.
The group may be said to be of class N.

Thus for the generating quadrilateral in figure 112 (p. 596), the class of
the group is zero when the arrangement of the conjugate pairs is 1, 2; 3, 4:
and it is unity when the arrangement of the pairs is 1, 3; 2, 4. For the
generating hexagon in figure 113 (p. 597), the class of the group is zero when
the arrangement of the conjugate pairs is 1, 6; 2, 5; 3, 4: and it is unity
when the arrangement of the pairs is 1, 4; 2, 5; 3, 6. For the generating
pentagon in figure 114 (p. 597), the class of the group is zero when the
arrangement of the conjugate pairs is 1, 8; 4, 5: and it is two, when the
arrangement of the pairs is 1,4; 3, 5. For a generating polygon, bounded
by 2n semi-circles each without all the others and by the portions of the
axis of &, the number of closed cycles is zero: hence N =n.

294. In all the groups, which lead to a division of a half-plane or of a
F. 39
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circle into polygons, the substitutions have real coefficients or are composed
of real substitutions and a single substitution with complex coefficients:
and thus the variation in the complex part of the coefficients in the group is
strictly limited. We now proceed to consider groups of substitutions
( oz + ,3)
2, —7 )
¥z + o
in which the coefficients are complex in the most general manner: such
groups, when properly discontinuous, are called Kleinian, by Poincaré.

The Fuchsian groups conserve a line, the axis of #, or a circle, the funda-
mental circle: the Kleinian groups do not conserve such a line or circle,
common to the group. Every substitution can be resolved into two dis-
placements of origin, an inversion and a reflexion, as in § 258. The inversion
has for its centre the point — &y, being the origin after the first displace-
ment ; the reflexion is in the line through this point making with the real
axis an angle 7 — 2arg. v. The only line left unaltered by these processes is
one which makes an angle {7 —arg. y with the real axis and passes through
the point ; and the final displacement to the point «/y will in general displace
this line. Moreover, arg. ¢ is not the same for all substitutions; there is
therefore no straight line thus conserved common to the group.

Similar considerations shew that there is no fundamental circle for the
group, persisting untransformed through all the substitutions.

Hence the Kleinian groups conserve no fundamental line and no funda-
mental circle: when they are used to divide the plane, the result cannot be
similar to that secured by the Fuchsian groups. As will now be proved,
they can be used to give relations between positions in space, as well as
relations between positions merely in a plane.

The lineo-linear relation between two complex variables, expressed as a
linear substitution, has been proved (§ 261) to be the algebraical equivalent
of any even number of inversions with regard to circles in the plane of the
variables: this analytical relation, when developed in its geometrical aspect,
can be made subservient to the correlation of points in space.

Let spheres be constructed which have, as their equatorial circles, the
circles in the system of inversions just indicated; let inversions be now carried
out with regard to these spheres, instead of merely with regard to their
equatorial circles. It is evident that the consequent relations between points
in the plane of the variable z are the same as when inversion is carried out
with regard to the circles: but now there is a unique transformation of points
that do not lie in the plane. Moreover, the transformation possesses the
character of conformal representation, for it conserves angles and it secures
the similarity of infinitesimal figures: points lying above the plane of z
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invert into points lying above the plane of 2, so that the plane of z is
common to all these spherical inversions and therefore common to the sub-
stitutions, the analytical expression of which is to be associated with the
geometrical operation ; and a sphere, having its centre in the plane of the
complex z is transformed into another sphere, having its centre in that plane,
so that the equatorial circles correspond to one another.

Through any point P in space, let an arbitrary sphere be drawn, having
its centre in the plane of the complex variable, say, that of the coordinates
£ n. It will be transformed, by the various inversions indicated, into another
sphere, having its centre also in the plane of § 7 and passing through the
point @ obtained from P as the result of all the inversions; and the equatorial
planes will correspond to one another.

Let the sphere through @ be
(F—ay+@ —bp+2=r2
or £ 4 £ —2af — 2y’ + k=0.
Hence, if () be determined by
L A A e R
this equation is P2+ he + he + k=0,

where —h, —h,=a +1b, a —b respectively. The equatorial circle of this
sphere is evidently given by ¢’ = 0, so that its equation is

2z +ht' +haz) +k=0;
this circle can be obtained from the equatorial circle of the sphere through P

by the substitution &'= o+ f3 .
¥z + 6

22, (00l + hootyy -+ hotgy + kyeye) + 20 (6B + hoBryy + 7oty + kryo6)
+ 2 (aBs + 708, + 1Bsy + kySs) + BBy + hoB, + hBsS + k88, =0 :
and therefore the equation of the sphere through P is

Hence the latter circle, by § 258, is given by

p? (aao + hoa'}’o + ho‘o’)’ + k’)’")’o) + 2, (aoﬁ + ho:e% + ho,d + ]"')’08)
+ 2z (aﬂo + hoaao + hBo'y + ]C'YBO) + ,860 + hOBSO + ;7//808 + kSSO = 0°

The quantities &, h,, k& are arbitrary quantities, subject to only the single
condition that the sphere passes through the point @: there is no other
relation that connects them. Hence the equation of the sphere through P
must, as a condition attaching to the quantities k, h,, &, be substantially the
equivalent of the former condition given by the equation of the sphere
through Q. In order that these two equations may be the same for 4, h,, £,
the variables p”, 2, 2, of the point @ and those of P, being p*, z, 2,, must give

39—2
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practically the same coefficients of &, h,, k& in the two equations, and therefore
P 1 prady + 2,28 + zaBs + BB
=2 : play, + 2By, + 2ad, + BS,
=12, : poayy + 2000 + 2By + Bed
=1 : pPyy, + 278 + 28, + 68,.

These are evidently the equations which express the variables of a point @ in
space in terms of the variables of the point P, when it is derived from P by
the generalisation of the linear substitution

w,=a'w+B:
yw + 6

they may be called the equations of the substitution. It is easy to deduce
that
& _ 1

& PPYYe + Z0yed + 2798y + 68,

which may be combined with the preceding equations of the substitution.

Also, the magnification for a single inversion is ds,/ds, or r/r, where 7,
and r are the distances of the arcs from the centre of the sphere relative to
which the inversion is effected. But r/r=¢/¢, where & and ¢ are the
heights of the arcs above the equatorial plane; hence the magnification is
&,/¢, for a single inversion. For the next inversion it is £/, and therefore it
is &/¢ for the two together; and so on. Hence the final magnification m
for the whole transformation is
v 1
L Cyve+ (v2 + ) (vo%o + S0)

_ 1
T ElyP+lyz+oP

a quantity that diminishes as the region recedes from the equatorial plane.

m

It is justifiable to regard the equations obtained as merely the generalisa-
tion of the substitution: they actually include the substitution in its original
application to plane variables. When the variables are restricted to the plane
of £, n, we have p*= 22, and therefore

= 220 + 2By + 208, + 85, _az+ B

224Y%0 + ZYe0 + 298, + 66, ez + 38’
on the removal of the factor .z, + 8, common to the numerator and the
denominator; and ¢ vanishes when {=0. The uniqueness of the result is
an a posteriort justification of the initial assumption that one and the same

point @ is derived from P, whatever be the inversions that are equivalent to
the linear substitution.
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Hz. 1. Let an elliptic substitution have « and v as its fixed points.

Draw two circles in the plane, passing through # and » and intersecting at an angle
equal to half the argument of the multiplier. The transformation of the plane, caused by
the substitution, is equivalent to inversions at these circles; the corresponding transforma-
tion of the space above the plane is equivalent to inversions at the spheres, having these
circles as equatorial circles. It therefore follows that every point on the line of intersection
of the spheres remains unchanged: hence when a Kletnian substitution is elliptic, every
point on the circle, in a plane perpendicular to the plane of x, y and kaving the line joining
the common points of the substitution as its diameter, 1s unchanged by the substitution.
Poincaré calls this circle (' the double (or fized) circle of the elliptic substitution.

Ex. 2. Prove that, when a Kleinian substitution is hyperbolic, the only points in space,
which are unchanged by it, are its double points in the plane of #, y; and shew that
it changes any circle through those points into itself and also any sphere through those
points into itself.

Ex. 3. Prove that, when the substitution is loxodromic, the circle €, in a plane
perpendicular to the plane #, ¥ and having as its diameter the line joining the common
points of the substitution, is transformed into itself, but that the only points on the
circumference left unchanged are the common points.

Ez. 4. Obtain the corresponding properties of the substitution when it is parabolic.

(All these results are due to Poincaré.)

295. The process of obtaining the division of the z-plane by means of
Kleinian groups is similar to that adopted for Fuchsian groups, except
that now there is no axis of real quantities or no fundamental circle
conserved in that plane during the substitutions: and thus the whole
plane is distributed. The polygons will be bounded by arcs of circles as
before: but a polygon will not necessarily be simply connected. Multiple
connectivity has already arisen in connection with real groups of the third
family by taking the plane on both sides of the axis.

As there are no edges of the second kind for polygons determined by
Kleinian groups, the only cycles of corners of polygons are closed cycles;
let 4,, 4,, ..., 4, in order be such a cycle in a polygon E,. Round 4,
describe a small curve, and let the successive polygons along this curve be
Ry, R, ..., R, ,, R,,.... The corner 4, belongs to each of these polygons:
when considered as belonging to R,,, it will in that polygon be the homologue
of A, as belonging to R,, if m <n; but, as belonging to R,, it will, in that
polygon, be the homologue of 4, as belonging to B,. Hence the substitution,
which changes R, into R,, has 4, for a fixed point.

This substitution may be either elliptic or parabolic, (but not hyperbolie,
§ 292): that it cannot be loxodromic may be seen as follows. Let pe™ be
the multiplier, where (§ 259) p is not unity and o is not zero: and let
3, denote the aggregate of polygons R,, R,, ..., R,, 2, the aggregate
R,, ..., Ry, and so on. Then 3, is changed to %, 3, to =,, and so on,
by the substitution. Let p be an integer such that pw >27; then, when
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the substitution has been applied p times, the aggregate of the polygons
is %, and it will cover the whole or part of one of the aggregates %, Z,,....
But, because p? is not unity, 3, does not coincide with that aggregate or the
part of that aggregate: the substitution is not then properly discontinuous,
contrary to the definition of the group. Hence there is no loxodromic
substitution in the group. If the substitution be elliptic, the sum of the
angles of the cycle must be a submultiple of 27 ; when it is parabolic, each
angle of the cycle is zero.

In the generalised equations whereby points of space are transformed
into one another, the plane of #, y is conserved throughout: it is
natural therefore to consider the division of space on the positive side of
this plane into regions P,, Pi,..., such that P, is changed into all the
other regions in turn by the application to it of the generalised equations.
The following results can be obtained by considerations similar to those
before adduced in the division of a plane*.

The boundaries of regions are either portions of spheres, having their
centres in the plane of #, y, or they are portions of that plane: the
regions are called polyhedral, and such boundaries are called faces. If the
face is spherical, it is said to be of the first kind: if it is a portion of
the plane of z, ¥, it is said to be of the second kind. TFaces of the
second kind, being in the plane of #, y and transformed into one another,
are polygons bounded by arcs of circles.

The intersections of faces are edges. Again, an edge is of the first
kind, when it is the intersection of two faces of the first kind: it is of
the second kind, when it is the intersection of a face of the first kind
with one of the second kind. An edge of the second kind is a circular
arc in the plane of #, y: an edge of the first kind, being the intersection
of two spheres with their centres in the plane of «, y, is a circular arc,
which lies in a plane perpendicular to the plane of », y and has its
centre in that plane.

The extremities of the edges are corners of the polyhedra. They are
of three categories:

(i) those which are above the plane of #, y and are the common
extremities of at least three edges of the first kind:

(i1) those which lie in the plane of #, y and are the common extremities
of at least three edges of the first kind :

(ii1) those which lie in the plane of #, y and are the common extremities
of at least one edge of the first kind and of at least two edges of
the second kind.

* See, in particular, Poincaré, Acta Math., t. iii, pp. 66 et seq.
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Moreover, points at which two faces touch can be regarded as vsolated corners,
the edges of which they are the intersections not being in evidence.

Faces of a polyhedron, which are of the first kind, are conjugate in pairs:
two conjugate faces are congruent by a fundamental substitution of the group.

Edges of the first kind, being the limits of the faces, arrange themselves
in cycles, in the same way as the angles of a polygon in the division of the
plane. If E,, E,, ..., E,_, be the n edges in a cycle, the number of regions
which have an edge in X is a multiple of n: and the sum of the dihedral
angles at the edges in a cycle (the dihedral angle at an edge being the
constant angle between the faces, which intersect along the edge) is a
submultiple of 2.

The relation between the polyhedral divisions of space and the polygonal
divisions of the plane is as follows. Let the group be such as to cause the
fundamental polyhedron P, to possess n faces of the second kind, say F,
Fy, ..., Fy,. Every congruent polyhedron will then have n faces of the
second kind; let those of P; be Fy, Fy, ..., Fy,. Every point in the plane
of , y belongs to some one of the complete set of faces of the second kind:
and, except for certain singular points and certain singular lines, no point
belongs to more than one face, for the proper discontinuity of the group
requires that no point of space belongs to more than one polyhedron.

Then the plane of , y is divided into n regions, say Dy, D,, ..., D, ; each
of these regions is composed of an infinite number of polygons, consisting of
the polygonal faces F. Thus D, is composed of Fy,, F., Fy, ...; and these
polygonal areas are such that the substitution S, transforms Fi, into ..
Hence it appears that, by a Kleinian group, the whole plane is divided into
a finite number of regions; and that each region is divided into an infinite
number of polygons, which are congruent to one another by the substitutions
of the group.

296. The preceding groups of substitutions, that have complex co-
efficients, have been assumed to be properly discontinuous.

Ez. Prove that, if any group of substitutions with complex coefficients be improperly
discontinuous, it is improperly discontinuous only for points in the plane of , y.

(Poincaré.)

One of the simplest and most important of the improperly discontinuous
groups of substitutions, is that compounded from the three fundamental
substitutions

1 .
Z=8z=2z+1, z’=Tz=—;, Z=Vz=12+r1,

where ¢ has the ordinary meaning. All the substitutions are easily proved to
be of the form

az +f3

yz+ 8’



