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1. Each of the two distinct pieces, into which o stmply connected surface S
18 resolved by a cross-cut, is wtself simply connected.

If either of the pieces, made by a cross-cut ab, be not simply connected,
then some cross-cut cd must be possible which will not resolve that piece into
distinct portions.

If neither ¢ nor d lie on ab, then the obliteration of the cut ab will restore
the original surface S, which now is not resolved by the cut cd into distinet
pieces.

If one of the extremities of cd, say c, lie on ab, then the obliteration of the
portion ¢b will change the two pieces into a single piece which is the original
surface S; and S now has a cross-cut acd, which does not resolve it into
distinct pieces.

If both the extremities lie on ab, then the obliteration of that part of ab
which lies between ¢ and d will change the two pieces into one; this is the
original surface S, now with a cross-cut acdb, which does not resolve it into
distinet pieces.

These are all the possible cases should either of the distinct pieces of S
not be simply connected ; each of them leads to a contradiction of the simple
connection of S; therefore the hypothesis on which each is based is untenable,
that is, the distinct pieces of S in all the cases are simply connected.

COROLLARY 1. A simply connected surface is resolved by n cross-cuts into
n+ 1 distinct pieces, each simply connected ; and an aggregate of m sumply
connected surfaces 1s resolved by n cross-cuts into m+m distinct pieces each
simply connected.

CorOLLARY 2. A surface that is resolved into two dustinct svmply con-
nected pieces by a cross-cut s simply connected before the resolution.

CorROLLARY 3. If a multiply connected surface be resolved into two
dufferent pieces by a cross-cut, both of these pieces cannot be simply connected.

We now come to a theorem* of great importance :—

IL  If a resolution of a surface by m cross-cuts into n distinct simply
connected pieces be possible, and also a different resolutron of the same surface by
W cross-cuts into v distinct sumply connected pieces, then m —n = p — v.

Let the aggregate of the n pieces be denoted by S and the aggregate of
the v pieces by % : and consider the effect on the original surface of a united
system of m + u simultaneous cross-cuts made up of the two systems of the
m and of the u cross-cuts respectively. The operation of this system can be
carried out in two ways: (i) by effecting the system of w cross-cuts on S and

* The following proof of this proposition is substantially due to Neumann, p. 157. Another
proof is given by Riemann, pp. 10, 11, and is amplified by Durége, Elemente der Theorie der
Functionen, pp. 183—190; and another by Lippich, see Durége, pp. 190—197.



160.] CONNECTIVITY 317

(i) by effecting the system of m cross-cuts on % : with the same result on the
original surface.

After the explanation of § 159, we may justifiably assume that the lines
of the two systems of cross-cuts meet only in points, if at all: let & be the
number of points of intersection of these lines. Whenever the direction of a
cross-cut meets a boundary line, the cross-cut terminates; and if the direction
continue beyond that boundary line, that produced part must be regarded as
a new cross-cut.

Hence the new system of w cross-cuts applied to § is effectively equiva-
lent to w4+ & new cross-cuts. Before these cuts were made, S was composed
of n simply connected pieces; hence, after they are applied, the new arrange-
ment of the original surface is made up of n+ (u + 8) simply connected
pieces.

Similarly, the new system of m cross-cuts applied to ¥ will give an
arrangement of the original surface made up of v+ (m + &) simply connected
pieces. These two arrangements are the same: and therefore

n+pu+d=v+m+éd,
80 that m—m=p—uv

Tt thus appears that, if by any system of ¢ cross-cuts a multiply connected
surface be resolved into a number p of pieces distinct from one another and
all simply connected, the integer ¢—p is independent of the particular
system of the cross-cuts and of their configuration. The integer ¢ —p is
therefore essentially associated with the character of the multiple connection
of the surface : and its invariance for a given surface enables us to arrange
surfaces according to the value of the integer.

No classification among the multiply connected surfaces has yet been
made : they have merely been defined as surfaces in which cross-cuts can be
made that do not resolve the surface into distinct pieces.

It is natural to arrange them in classes according to the number of cross-
cuts which are necessary to resolve the surface into one of simple connection
or a number of pieces each of simple connection.

For a simply connected surface, no such cross-cut is necessary: then
q=0, p=1,and in general g—p=—1. We shall say that the connectrvity*
is unity. Examples are furnished by the area of a plane circle, and by a
spherical surface with one holet.

A surface is called doubly-connected when, by one appropriate cross-cut,
the surface is changed into a single surface of simple connection: then ¢=1,
p =1 for this particular resolution, and therefore in general, g —p=0. We

* Sometimes order of conmection, sometimes adelphic order; the German word, that is used,

is Grundzahl,
+ The hole is made to give the surface a boundary (§ 163).
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shall say that the connectivity is 2. Examples are furnished by a plane ring
and by a spherical surface with two holes.

A surface is called triply-connected when, by two appropriate cross-cuts,
the surface is changed into a single surface of simple connection: then g =2,
p =1 for this particular resolution and therefore, in general, ¢—p=1. We
shall say that the connectivity is 3. Examples are furnished by the surface
of an anchor-ring with one hole in it*, and by the surfaces+ in Figure 39, the
surface in (2) not being in one plane but one part beneath another.

iy

‘
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Fig. 39.

And, in general, a surface will be said to be N-ply connected or its
connectivity will be denoted by X, if, by N —1 appropriate cross-cuts, it can
be changed into a single surface that is simply connectedf. For this
particular resolution g=N —1, p=1: and therefore in general

q—-p=N-2,
or N=g—-p+2

Let a cross-cut ! be drawn in a surface of connectivity IN. There are
two cases to be considered, according as it does not or does divide the surface
into distinct pieces.

First, let the surface be only one piece after I is drawn: and let its
connectivity then be N'. If in the original surface ¢ cross-cuts (one of
which can, after the preceding proposition, be taken to be ) be drawn
dividing the surface into p simply connected pieces, then

N=qg—p+2
To obtain these p simply connected pieces from the surface after the cross-cut
l, it is evidently sufficient to make the ¢ —1 original cross-cuts other than [;
that is, the modified surface is such that by ¢ — 1 cross-cuts it is resolved into
p simply connected pieces, and therefore
N =(q-1)—-p+2.
Hence N'=N —1, or the connectivity of the surface is diminished by unity.

* The hole is made to give the surface a boundary (§ 163).

+ Riemann, p. 89.

T A few writers estimate the connectivity of such a surface ag N -1, the same as the number
of cross-cuts which can change it into a single surface of the simplest rank of connectivity : the
estimate in the text seems preferable.
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Secondly, let the surface be two pieces after [ is drawn, of connectivities
N, and N, respectively. Let the appropriate IV, — 1 cross-cuts in the former,
and the appropriate &V, —1 in the latter, be drawn so as to make each a
simply connected piece. Then, together, there are two simply connected
pieces.

To obtain these two pieces from the original surface, it will suffice to
make in it the cross-cut {, the N, —1 cross-cuts, and the N,— 1 cross-cuts,
that is, 1 + (¥, — 1) + (Ny;—1) or N, + N, — 1 cross-cuts in all. Since these,
when made in the surface of connectivity NV, give two pieces, we have

N=(N,+N,—1)-2+2,
and therefore N, +N,=N+1.

If one of the pieces be simply connected, the connectivity of the other is N;
so that, if a simply connected piece of surface be cut off a multiply connected
surface, the connectivity of the remainder is unchanged. Hence:

IIL.  If a cross-cut be made i a surface of connectivity N and if it do
not duvide it into separate pieces, the connectivity of the modified surface s

N —1; but of it divide the surface into two separate preces of connectivities N,
and N, then N, + N,=N + 1.

Tllustrations are shewn, in Fig. 40, of the effect of cross-cuts on the two
surfaces in Fig. 39.

IV. In the same way it may be proved that, if s cross-cuts be made in a
surface of connectivity N and divide it into v+ 1 separate preces (where r< s)
of connectivities Ny, Ny, ..., N,y respectively, then

N+Ny+...+N,y=N+2r—s
a more general result including both of the foregoing cases.

Thus far we have been considering only cross-cuts: it is now necessary
to consider loop-cuts, so far as they affect the connectivity of a surface in
which they are made.
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A loop-cut is changed into a cross-cut, if from 4 any point of it a cross-cut
be made to any point € in a boundary-curve of the
original surface, for CAbd 4 (Fig. 41) is then evi-
dently a cross-cut of the original surface ; and C4 is
a cross-cut of the surface, which is the modification
of the original surface after the loop-cut has been
made. Since, by definition, a loop-cut does not
meet the boundary, the cross-cut €4 does not
divide the modified surface into distinct pieces;
hence, according as the effect of the loop-cut is, Fig. 41.
or is not, that of making distinet pieces, so will '
the effect of the whole cross-cut be, or not be, that of making distinct pieces.

161. Let a loop-cut be drawn in a surface of connectivity IV; as before
for a cross-cut, there are two cases for consideration, according as the loop-cut
does or does not divide the surface into distinct pieces.

First, let it divide the surface into two distinet pieces, say of connectivities
N, and N, respectively. Change the loop-cut into a cross-cut of the original
surface by drawing a cross-cut in either of the pieces, say the second, from a
point in the course of the loop-cut to some point of the original boundary.
This cross-cut, as a section of that piece, does not divide it into distinct
pieces: and therefore the connectivity is now N, (= N,—1). The effect of
the whole section, which is a single cross-cut, of the original surface is to
divide it into two pieces, the connectivities of which are IV, and IV, : hence,
by § 160, IIL,

- N, +N/=N+1,
and therefore N, +N,=N+2.

If the piece cut out be simply connected, say IV, =1, then the connectivity
of the remainder is N +1. But such a removal of a simply connected piece
by a loop-cut is the same as making a hole in a continuous part of the
surface : and therefore the effect of making a simple hole in a continuous part
of @ surface is to increase by unity the connectivity of the surfuce.

If the piece cut out be doubly connected, say N, =2, then the connect-
ivity of the remainder is N, the same as the connectivity of the original
surface. Such a portion would be obtained by cutting out a piece with a
hole in it which, so far as concerns the original surface, would be the same as
merely enlarging the hole—an operation that naturally would not affect
the connectivity.

Secondly, let the loop-cut not divide the surface into two distinet pieces:
and let N’ be the connectivity of the modified surface. In this modified
surface make a cross-cut k from any point of the loop-cut to a point of the
boundary: this does not divide it into distinct pieces and therefore the
connectivity after this last modification is N’ —1. But the surface thus
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finally modified is derived from the original surface by the single cross-cut,
constituted by the combination of % with the loop-cut: this single cross-cut
does not divide the surface into distinct pieces and therefore the connectivity
after the modification is N —1. Hence
N —1=N-1,
that is, N’ =N, or the connectivity of a surface is not affected by a loop-cut
which does not dvvide the surfuce vnto distinct preces.
Both of these results are included in the following theorem : —

V. If after any number of loop-cuts made in o surface of commectivity
N, there be r + 1 distinct pieces of surface, of connectivities Ny, Ny, ..., Ny,
then

N+N+...... + Ny =N+ 2,

Let the number of loop-cuts be s. Each of them can be changed into a
cross-cut of the original surface, by drawing in some one of the pieces, as may
be convenient, a cross-cut from a point of the loop-cut to a point of a
boundary ; this new cross-cut does not divide the piece in which it is drawn
into distinct pieces. If k such cross-cuts (where & may be zero) be drawn in
the piece of connectivity NV, the connectivity becomes IV,,/, where

N/ = Nu—k;
741 41 741
hence S N,/=2>N,—3k=3% N,,—s.
Mm=1 m=1 m=1

We now have s cross-cuts dividing the surface of connectivity IV into = +1
distinet pieces, of connectivities N, N/, ..., N/, N,.,"; and therefore, by
§ 160, IV,
N+ ...+ N+ N, =N+2r—s,

so that N4+ Ny+...+ Npyy= N+ 2.

This result could have been obtained also by combination and repetition
of the two results obtained for a single loop-cut.

Thus a spherical surface with one hole in it is simply connected: when
n —1 other different holes* are made in it, the edges of the holes being
outside one another, the connectivity of the surface is increased by n—1,
that is, it becomes n. Hence a spherical swrface with n holes in 1t is n-ply
connected.

162. Occasionally, it is necessary to consider the effect of a slit made in
the surface.

If the slit have neither of its extremities on a boundary (and therefore no
point on a boundary) it can be regarded as the limiting form of a loop-cut
which makes a hole in the surface. Such a slit therefore (§ 161) increases the
connectivity by unity.

* These are holes in the surface, not holes bored through the volume of the sphere ; one of
the latter would give two holes in the surface.

F. 21
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If the slit have one extremity (but no other point) on a boundary, it can
be regarded as the limiting form of a cross-cut, which returns
on itself as in the figure, and cuts off a single simply con-
nected piece. Such a slit therefore (§ 160, III.) leaves the
connectivity unaltered. @

If the slit have both extremities on boundaries, it ceases
to be merely a slit: it is a cross-cut the effect of which on Fig. 42.
the connectivity has been obtained. We do not regard such
sections as slits.

163. In the preceding investigations relative to cross-cuts and loop-cuts,
reference has continually been made to the boundary of the surface con-
sidered.

The boundary of a surface consists of a line returning to itself, or of a
system of lines each returning to itself Each part of such a boundary-line
as it is drawn is considered a part of the boundary, and thus a boundary-line
cannot cut itself and pass beyond its earlier position, for a boundary cannot
be crossed : each boundary-line must therefore be a simple curve*.

Most surfaces have boundaries: an exception arises in the case of closed
surfaces whatever be their connectivity. It was stated (§ 159) that a
boundary is assigned to such a surface by drawing an infinitesimal simple
curve in it or, what is the same thing, by making a small hole. The
advantage of this can be seen from the simple example of a spherical
surface.

When a small hole is made in any surface the connectivity is increased
by unity: the connectivity of the spherical surface after the hole is made is
unity, and therefore the connectivity of the complete spherical surface
must be taken to be zero.

The mere fact that the connectivity is less than unity, being that of the
simplest connected surfaces with which we have to deal,
is not in itself of importance. But let us return for a
moment to the suggested method of determining the
connectivity by means of the evanescence of circuits
without crossing the boundary. When the surface is
the complete spherical surface (Fig. 43), there are two
essentially distinct ways of making a circuit C evan-
escent, first, by making 1t collapse into the point e, Fig. 43.
secondly by making it expand over the equator and
then collapse into the point b. One of the two is superfluous: it introduces
an element of doubt as to the mode of evanescence unless that mode be
specified—a specification which in itself is tantamount to an assignment of

* Also a line not returning to itself may be a boundary ; it can be regarded as the limit of a
simple curve when the area becomes infinitesimal.
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boundary. And in the case of multiply connected surfaces the absence of
boundary, as above, leads to an artificial reduction of the connectivity by
unity, arising not from the greater simplicity of the surface but from the
possibility of carrying out in two ways the operation of reducing any circuit
to given circuits, which is most effective when only one way is permissible.
We shall therefore assume a boundary assigned to such closed surfaces as in
the first instance are destitute of boundary.

164. The relations between the number of boundaries and the connect-
ivity of a surface are given by the following propositions.

I The boundary of a simply connected surface consists of a single line.

When a boundary consists of separate lines, then a cross-cut can be made
from a point of one to a point of another. By proceeding from
P, a point on one side of the cross-cut, along the boundary
ac...c’a’ we can by a line lying wholly in the surface reach a P e
point @ on the other side of the cross-cut: hence the parts of
the surface on opposite sides of the cross-cut are connected.
The surface is therefore not resolved into distinct pieces by the
cross-cut.

(S

x
D afls

c/
A simply connected surface is resolved into distinct pieces Fig. 44.

by each cross-cut made in it : such a cross-cut as the foregoing

is therefore not possible, that is, there are not separate lines which make up

its boundary. It has a boundary: the boundary therefore consists of a single

line.

1. A cross-cut either increases by unity or diminishes by unity the number
of distinct boundary-lines of a multiply connected surface.

A cross-cut is made in one of three ways: either from a point @ of one
boundary-line A to a point b of another boundary-line B; or from a point o
of a boundary-line to another point &’ of the same boundary-line ; or from a
point of a boundary-line to a point in the cut itself.

If made in the first way, a combination of one edge of the cut, the
remainder of the original boundary 4, the other edge of the cut and the
remainder of the original boundary B taken in succession, form a single
piece of boundary; this replaces the two boundary-lines A and B which
existed distinct from one another before the cross-cut was made. Hence the
number of lines is diminished by unity. An example is furnished by a plane
ring (ii., Fig. 37, p. 314). ‘

If made in the second way, the combination of one edge of the cut with
the picce of the boundary on one side of it makes one boundary-line, and the
combination of the other edge of the cut with the other piece of the boundary
makes another boundary-line. Two boundary-lines, after the cut is made,

21—2
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replace a single boundary-line, which existed before it was made: hence the
number of lines is increased by unity. Examples are furnished by the cut
surfaces in Fig. 40, p. 319. ‘

If made in the third way, the cross-cut may be considered as constituted
by a loop-cut and a cut joining the loop-cut to the boundary. The boundary-
lines may now be considered as constituted (Fig. 41, p. 320) by the closed
curve ABD and the closed boundary abda’c’e’...eca; that is, there are now
two boundary-lines instead of the single boundary-line ce...¢’c’c in the uncut
surface. Hence the number of distinct boundary-lines is increased by unity.

CorROLLARY. A loop-cut increases the number of distinct boundary-lines
by two.

This result follows at once from the last discussion.

III.  The number of distinct boundary-lines of a surface of connectivity N
18 N — 2k, where k vs a positive integer that may be zero.

Let m be the number of distinct boundary-lines; and let N —1 appro-
priate cross-cuts be drawn, changing the surface into a simply connected
surface. Each of these cross-cuts increases by unity or diminishes by unity
the number of boundary-lines; let these units of increase or of decrease be
denoted by €, €, ..., ey—. Each of the quantities e is +1; let £ of them be
positive, and N —1 —k negative. The total number of boundary-lines is
therefore

m+k—(N—-1-k).
The surface now is a single simply connected surface, and there is therefore
only one boundary-line ; hence
m+k—(N-1-k)=1,
so that m=N —2k;
and evidently % is an integer that may be zero.

CorOLLARY 1. A closed surface with a single boundary-line® is of odd
connectrvity.

For example, the surface of an anchor-ring, when bounded, is of con-
nectivity 3; the surface, obtained by boring two holes through the volume
of a solid sphere, is, when bounded, of connectivity 5.

If the connectivity of a closed surface with a single boundary be 2p + 1,
the surface is often said¥ to be of class p (§ 178, p. 349.)

COROLLARY 2. If the number of distinct boundary lines of a surface of
connectivity N be N, any loop-cut divides the surface into two distinct pieces.

After the loop-cut is made, the number of distinct boundary-lines is
N +2; the connectivity of the whole of the cut surface is therefore not less

* See § 159.
+ The German word is Geschlecht; French writers use the word genre, and Italians genere.
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than N+ 2. It has been proved that a loop-cut, which does not divide the
surface into distinet pieces, does not affect the connectivity; hence as the
connectivity has been increased, the loop-cut must divide the surface into
two distinct pieces. It is easy, by the result of § 161, to see that, after the
loop-cut is made, the sum of connectivities of the two pieces is N +2, so
that the connectivity of the whole of the cut surface is equal to N +2.

Note. Throughout these propositions, a tacit assumption has been made,
which is important for this particular proposition when the surface is the
means of representing the variable. The assumption is that the surfuace is
bifactal and mot umifacial; it has existed implicitly throughout all the
geometrical representations of variability: it.found explicit expression in
§ 4 when the plane was brought into relation with the sphere: and a cut
in a surface has been counted a single cut, occurring in one face, though it
would have to be counted as two cuts, one on each side, were the surface
unifacial.

The propositions are not necessarily valid, when applied to unifacial
surfaces. Consider a surface made out of a long rectangular slip of paper,
which is twisted once (or any odd number of times) and then has its ends
fastened together. This surface is of double connectivity, because one
section can be made across it which does not divide it into separate pieces ;
it has only a single boundary-line, so that Prop. IIL just proved does not
apply. The surface is unifacial; and it is possible, without meeting the
boundary, to pass continuously in the surface from a point P to another
point @ which could be reached merely by passing through the material
at P.

We therefore do not retain unifacial surfaces for consideration.

165. The following proposition, substantially due to Lhuilier*, may be
taken in illustration of the general theory.

If a closed surface of connectivity 2N +1 (or of class N) be divided by
circusts into any number of simply connected portions, each in the form of a
curvilinear polygon, and of F be the number of polygons, K be the number of
edges and S the number of angular povnts, then

2N=2+E-F-8.

Let the edges £ be arranged in systems, a system being such that any
line in it can be reached by passage along some other line or lines of the
system ; let & be the number of such systems+. To resolve the surface into a
number of simply connected pieces composed of the F' polygons, the cross-cuts
will be made along the edges; and therefore, unless a boundary be assigned

* Gergonne, Ann. de Math., t. iii, (1813), pp. 181—186; see also Mdobius, Ges. Werke, t. ii,
p. 468. A circuit is defined in § 166,
+ The value of % is 1 for the proposition and is greater than 1 for the Corollary.
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to the surface in each system of lines, the first cut for any system will be a
loop-cut. We therefore take & points, one in each system as a boundary ;
the first will be taken as the natural boundary of the surface, and the
remaining k£ —1, being the limiting forms of £ —1 infinitesimal loop-cuts,
increase the connectivity of the surface by &k — 1, that is, the connectivity now

is 2N + L.

The result of the cross-cuts is to leave ' simply connected pieces: hence
@, the number of cross-cuts, is given by

Q=2N+k+F—2.

At every angular point on the uncut surface, three or more polygons are
contiguous. Let S,, be the number of angular points, where m polygons are
contiguous; then

S=8+8,+8S;+...

Again, the number of edges meeting at each of the S; points is three, at
each of the S, points is four, at each of the S; points is five, and so on; hence,
in taking the sum 3S;+ 48,4+ 58S, + ..., each edge has been counted twice, once
for each extremity. Therefore

2K =88, +48,+ 585, + ...

Consider the composition of the extremities of the cross-cuts; the number
of the extremities is 2¢), twice the number of cross-cuts.

Each of the &k points furnishes two extremities; for each such point
is a boundary on which the initial cross-cut for each of the systems must
begin and must end. These points therefore furnish 2k extremities.

The remaining extremities occur in connection with the angular points.
In making a cut, the direction passes from a boundary along an edge, past
the point along another edge and so on, until a boundary is reached ; so that
on the first occasion when a cross-cut passes through a point, it is made along
two of the edges meeting at the point. Every other cross-cut passing through
that point must begin or end there, so that each of the S; points will furnish
one extremity (corresponding to the remaining one cross-cut through the
point), each of the S, points will furnish two extremities (corresponding to
the remaining two cross-cuts through the point), and so on. The total
number of extremities thus provided is

S+ 28, + 38+ ...
Hence 2Q0=2k+ S;+ 25, + 38, + ...
=2k+4 2K — 28,
or RQ=k+E-S5,

which combined with Q=2N+k+F-2,
leads to the relation 2N=24+KE-—-F-S.
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The simplest case is. that of a sphere, when Euler’s relation F+ 8 = E + 2
is obtained. The case next in simplicity is that of an anchor-ring, for which
the relation is F+ S=E.

COROLLARY. If the result of making the cross-cuts along the various edges
be to give the F' polygons, not simply connected areas but areas of connectivities
N,+1, N,+1, ..., Np+ 1 respectively, then the connectivity of the original
surface s gien by B

2N=2+E-F-8+ ElN,,.
r=

166. The method of determining the connectivity of a surface by means
of a system of cross-cuts, which resolve it into one or more simply connected
pieces, will now be brought into relation with the other method, suggested
in § 159, of determining the connectivity by means of irreducible circuits.

A closed line drawn on the surface is called a circust.

A circuit, which can be reduced to a point by continuous deformation
without crossing the boundary, is called reducible ; a circuit, which cannot be
so reduced, is called vrreducible.

An irreducible circuit is either (i) simple, when it cannot without crossing
the boundary be deformed continuously into repetitions of one or more
circuits; or (ii) multiple, when it can without crossing the boundary be
deformed continuously into repetitions of a single circuit; or (iil) compound,
when it can without crossing the boundary be deformed continuously into
combinations of different circuits, that may be simple or multiple. The
distinction between simple circuits and compound circuits, that involve no
multiple circuits in their combination, depends upon conventions adopted for
each particular case.

A circuit is said to be reconcileable with the system of circuits into a
combination of which it can be continuously deformed.

If a system of circuits be reconcileable with a reducible circuit, the
system is said to be reducible.

As there are two directions, one positive and the other negative, in which
a circuit can be described, and as there are possibilities of repetitions and of
compositions of circuits, it is clear that circuits can be represented by linear
algebraical expressions involving real quantities and having merely numerical
coefficients.

Thus a reducible circuit can be denoted by 0.

If a simple irreducible circuitl, positively described, be denoted by a, the
same circuit, negatively described, can be denoted by —a.

The multiple circuit, which is composed of m positive repetitions of the

simple irreducible circuit @, would be denoted by ma ; but if the m repetitions
were negative, the multiple circuit would be denoted by — ma.
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A compound circuit, reconcileable with a system of simple irreducible
circuits a,, d, ..., @, would be denoted by mya, +m.a,+ ...+ mya,, where
my, My, ..., My, are positive or negative integers, being the net number of
positive or negative descriptions of the respective simple irreducible circuits.

The condition of the reducibility of a system of circuits «,, a,, ..., @y,
each one of which is simple and irreducible, is that integers m,, m,, ..., m,
should exist such that

My + Mgy + o + My, =0,
the sign of equality in this equation, as in other equations, implying that
continuous deformation without crossing the boundary can change into one
another the circuits, denoted by the symbols on either side of the sign.

The representation of any compound circuit in terms of a system of
independent irreducible circuits is unique: if there were two different
expressions, they could be equated in the foregoing sense and this would
imply the existence of a relation

Pudy+ Patls + oo+ Pultn =0,
which is excluded by the fact that the system is irreducible.

Further, equations can be combined linearly, provided that the coefficients
of the combinations be merely numerical.

167. In order, then, to be in a position to estimate circuits on a multiply
connected surface, it is necessary that an irreducible system of irreducible
simple circuits should be known, such a system being considered complete
when every other circuit on the surface is reconcileable with the system.

Such a system is not necessarily unique; and it must be proved that, 4/
more than one complete system be obtainable, any circurt can be reconciled with
each system.

First, the number of simple vrreductble circuits in any complete system
must be the same for the same surface.

Let ay, ..., ap; and by, ..., b,; be two complete systems. Because a, ...,
a, constitute a complete system, every circuit of the system of circuits b is
reconcileable with it ; that is, integers m; exist, such that

b, = My + Moyl + ... + My,

forr=1,2,...,n. If n were >p, then by combining linearly each equation
after the first p equations with those p equations, and eliminating «,, ..., a,
from the set of p + 1 equations, we could derive n — p relations of the form

Mb, +Mb,+ ...+ M,b,=0,

where the coefficients M, being determinants the constituents of which are
integers, would be integers. The system of circuits b is irreducible, and there
are therefore no such relations; hence n is not greater than p.
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Similarly, by considering the reconciliation of each circuit o with the
irreducible system of circuits b, it follows that p is not greater than n.
Hence p and » are equal to one another. And, because each system is a
complete system, there are integers 4 and B such that
tp=Apb + A0+ ... + A0, (r=1, ..., n)}
bs= Bua, + Buas + ... + Bgya, (s=1, ...,m) )’
The determinant of the integers A is equal to +1; likewise the deter-
minant of the integers B.

Secondly, let © be a circuit reconcileable with the system of circurts a: it is
reconcileable with any other complete system of circuits.
Since @ is reconcileable with the system @, integers m, ..., m, can be

found such that
€T =m0+ ...+ MyQy,.
Any other complete system of n circuits b is such that the circuits ¢ can
be expressed in the form
tp=Apub + ... + Ay, (=1, ..., n),
where the coefficients 4 are integers; and therefore
A

n n
z=b 2 md,+b,Zmd,+...+b, 2 mAd,,
r=1 r=1 r=1
=0+ @by + ...+ @b,
where the coefficients ¢ are integers, that is, « is reconcileable with the

complete system of circuits .

168. It thus appears that for the construction of any circuit on a surface,
it is sufficient to know some one complete system of simple irreducible
circuits. A complete system is supposed to contain the smallest possible
number of simple circuits: any one which is reconcileable with the rest is
omitted, so that the circuits of a system may be considered as independent.
Such a system is indicated by the following theorems :—

I. DNo trreducible simple circuit can be drawn on a simply connected
surface®.

If possible, let an irreducible circuit €' be drawn in a simply connected
surface with a boundary B. Make a loop-cut along C, and change it into a
cross-cut by making a cross-cut A4 from some point of C' to a point of B;
this cross-cut divides the surface into two simply connected pieces, one of
which is bounded by B, the two edges of 4, and one edge of the cut along C,
and the other of which is bounded entirely by the cut along C.

The latter surface is smaller than the original surface; it is simply
connected and has a single boundary. If an irreducible simple circuit can
be drawn on it, we proceed as before, and again obtain a still smaller simply
connected surface. In this way, we ultimately obtain an infinitesimal

* All surfaces considered are supposed to be bounded.
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element; for every cut divides the surface, in which it is made, into
distinct pieces. Irreducible circuits cannot be drawn in this element; and
therefore its boundary is reducible. This boundary is a circuit in a larger
portion of the surface: the circuit is reducible so that, in that larger portion
no irreducible circuit is possible and therefore its boundary is reducible.
This boundary is a circuit in a still larger portion, and the circuit is
reducible : so that in this still larger portion no irreducible circuit is possible
and once more the boundary is reducible.

Proceeding in this way, we find that no irreducible simple circuit is
possible in the original surface.

COROLLARY. No trreducible circuit can be drawn on a simply connected
surface.

II. A complete system of irreducible simple circuits for a surface of
conmectivity N contains N — 1 simple circuts, so that every other circutt on the
surface s reconcileable with that system.

Let the surface be resolved by cross-cuts into a single simply connected
surface: N —1 cross-cuts will be necessary. Let CD be

any one of them: and let @ and b be two points on the e
opposite edges of the cross-cut. Then since the surface is {a b

simply connected, & line can be drawn in the surface from ———713——

b
a to b without passing out of the surface or without \
meeting a part of the boundary, that is, without meeting Y
any other cross-cut. The cross-cut OD ends either in Fig. 45.

another cross-cut or in a boundary; the line ae...fb

surrounds that other cross-cut or that boundary as the case may be: hence,
if the cut CD be obliterated, the line ae... fba is irreducible on the surface in
which the other NV — 2 cross-cuts are made. But it meets none of those cross-
cuts; hence, when they are all obliterated so as to restore the unresolved
surface of connectivity &, it is an irreducible circuit. It is evidently not
a repeated circuit; hence it is an irreducible simple circuit. Hence the
line of an wrreducible simple circuit on an unresolved surface ts given by
a line passing jfrom a point on one edge of a cross-cut in the resolved
surface to a point on the opposite edge.

Since there are N — 1 cross-cuts, it: follows that N —1 irreducible simple
circuits can thus be obtained: one being derived in the foregoing manner
from each of the cross-cuts, which are necessary to render the surface simply
connected. It is easy to see that each of the irreducible circuits on an
unresolved surface is, by the cross-cuts, rendered impossible as a circuit on
the resolved surface.

But every other irreducible circuit C' is reconcileable with the N —1
circuits, thus obtained. If there be one not reconcileable with these N —1
circuits, then, when all the cross-cuts are made, the circuit C is not rendered
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impossible, if it be not reconcileable with those which are rendered impossible
by the cross-cuts: that is, there is on the resolved surface an irreducible
circuit. But the resolved surface is simply connected, and therefore no

irreducible circuit can be drawn on it: hence the hypothesis as to C, which
leads to this result, is not tenable.

Thus every other circuit is reconcileable with the system of N — 1 circuits :
and therefore the system ts complete*®.

This method of derivation of the circuits at once indicates how far a
system is arbitrary. Kach system of cross-cuts leads to a complete system of

irreducible simple circuits, and vice versa; as the one system is not unique,
so the other system is not unique.

For the general question, Jordan’s memoir, Des contours tracés sur les surfaces,
Liouville, 2™ 8ér., t. xi., (1866), pp. 110—130, may be consulted.

Ez. 1. On a doubly connected surface, one irreducible simple circuit can be drawn.
It is easily obtained by first resolving the surface into one that is simply connected—
a single cross-cut D is effective for this purpose—and then by drawing a curve aeb in the

Fig. 48, (i).

surface from one edge of the cross-cut to the other. All other irreducible circuits on the
unresolved surface are reconcileable with the circuit acba.

Ez. 2. On a triply-connected surface, two independent irreducible circuits can be

y =
/// 04
i

Fig. 46, (if).

* If the number of independent irreducible simple circuits be adopted as a basis for the
definition of the connectivity of a surface, the result of the proposition would be taken as the
definition : and the resolution of the surface into one, which is simply connected, would then be
obtained by developing the preceding theory in the reverse order.
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drawn. Thus in the figure ¢, and C, will form a complete system. The circuits C; and C,
are also irreducible : they can evidently be deformed into C; and € and reducible circuits
by continuous deformation : in the algebraical notation adopted, we have

Co=01+C,y, =0 -0,

Ex. 3. Another example of a triply connected surface is given in Fig. 47. Two irredu-
cible simple circuits ave C; and C,. Another irreducible circuit is Cy; this can be

Fig. 47.

reconciled with €, and C, by drawing the point « into coincidence with the intersection
of ¢, and C,, and the point ¢ into coincidence with the same point.

Ex. 4. As a last example, consider the surface of a solid sphere with # holes bored
through it. The connectivity is 2n+1: hence 2 independent irreducible simple circuits

Fig. 48.

can be drawn on the surface. The simplest complete system is obtained by taking 2n
curves: made up of a set of n, each round one hole, and another set of n, each through
one hole.

A resolution of this surface is given by taking cross-cuts, one round each hole (making
the circuits through the holes no longer possible) and one through each hole (making the
circuits round the holes no longer possible).

The simplest case is that for which n=1: the surface is equivalent to the anchor-ring.

169. Surfaces are at present being considered in view of their use as a
means of representing the value of a complex variable. The foregoing inves-
tigations imply that surfaces can be classed according to their connectivity ;
and thus, having regard to their designed use, the question arises as to
whether all surfaces of the same connectivity are equivalent to one another,
so as to be transformable into one another.
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Moreover, a surface can be physically deformed and still remain suitable for
representation of the variable, provided certain conditions are satisfied. We
thus consider geometrical transformation as well as physical deformation ; but
we are dealing only with the general results and not with the mathematical
relations of stretching and bending, which are discussed in treatises on
Analytical Geometry*.

It is evident that continuity is necessary for both: discontinuity would
imply discontinuity in the representation of the variable. Points that are
contiguous (that is, separated only by small distances measured in the surface)
“must remain contiguoust: and one point in the unchanged surface must
correspond to only one point in the changed surface. Hence in the continuous
deformation of a surface there may be stretching and there may be bending ;
but there must be no tearing and there must be no joining.

For instance, a single untwisted ribbon, if cut, comes to be simply connected. If a twist
through 180° be then given to one end and that end be then joined to the other, we shall
have a once-twisted ribbon, which is a surface with only one face and only one edge;
it cannot be looked upon as an equivalent of the former surface.

A spherical surface with a single hole can have the hole stretched and the surface
flattened, so as to be the same as a bounded portion of a plane: the two surfaces are
equivalent to one another. Again, in the spherical surface, let a large indentation be
made : let both the outer and the inner surfaces be made spherical ; and let the mouth of
the indentation be contracted into the form of a long, narrow hole along a part of a great
circle.  'When each point of the inner surface is geometrically thoved so that it occupies the
position of its reflexion in the diametral plane of the hole, the final form§ of the whole
surface is that of a two-sheeted surface with a junction along a line: it is a spherical
winding-surface, and is equivalent to the simply connected spherical surface.

170. It is sufficient, for the purpose of representation, that the two
surfaces should have a point-to-point transformation: it is not necessary
that physical deformation, without tears or joins, should be actually possible.
Thus a ribbon with an even number of twists would be as effective as a
limited portion of a cylinder, or (what is the same thing) an untwisted ribbon :
but it is not possible to deform the one into the other physicallyf.

It is easy to see that either deformation or transformation of the kind
considered will change a bifucial surface into o bifactal surface ; that ot will
not alter the connectivity, for it will not change irreducible circuits into

* See, for instance, Frost’s Solid Geometry, (8rd ed.), pp. 342—352.

+ Distances between points must be measured along the surface, not through space; the
distance between two points is a length which one point would traverse before reaching the
position of the other, the motion of the point being restricted to take place in the surface.
Examples will arise later, in Riemann’s surfaces, in which points that are contiguous in space
are separated by finite distances on the surface.

§ Clifford, Coll. Math. Papers, p. 250.

T The difference between the two cases is that, in physical deformation, the surfaces are the
surfaces of continuous matter and are impenetrable; while, in geometrical transformation, the
surfaces may be regarded as penetrable without interference with the continuity.
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reducible circuits, and the number of independent irreducible circuits
determines the connectivity: and that ¢t will not alter the number of boundary
curves, for a boundary will be changed into a boundary. These are necessary
relations between the two forms of the surface: it is not difficult to see that
they are sufficient for correspondence. For if, on each of two bifacial surfaces
with the same number of boundaries and of the same connectivity, a complete
system of simple irreducible circuits be drawn, then, when the members of the
systems are made to correspond in pairs, the full transformation can be effected
by continuous deformation of those corresponding irreducible circuits. It
therefore follows that :— '

The necessary and sufficient conditions, that two bifacial surfaces may be
equivalent to one another for the representation of a variable, are that the two
surfaces should be of the same connectivity and should have the same number of
boundaries.

As already indicated, this equivalence is a geometrical equivalence :
deformation may be (but is not of necessity) physically possible.

Similarly, the presence of one or of several knots in a surface makes no
essential difference in the use of the surface for representing a variable. Thus
a long cylindrical surface is changed into an anchor-ring when its ends are
joined together; but the changed surface would be equally effective for
purposes of representation if a knot were tied in the cylindrical surface before
the ends are joined.

But it need hardly be pointed out that though surfaces, thus twisted or
knotted, are equivalent for the purpose indicated, they are not equivalent for
all topological enumerations.

Seeing that bifacial surfaces, with the same connectivity and the same
number of boundaries, are equivalent to one another, it is natural to adopt, as
the surface of reference, some simple surface with those characteristics; thus
for a surface of connectivity 2p + 1 with a single boundary, the surface of a
solid sphere, bounded by a point and pierced through with p holes, could be
adopted.

Klein calls* such a surface of reference a Normal Surface.

It has been seen that a bounded spherical surface and a bounded simply connected
part of a plane are equivalent—they are, moreover, physically deformable into one
another.

An untwisted closed ribbon is equivalent to a bounded piece of a plane with one hole
in it—they are deformable into one another: but if the ribbon, previous to being closed,
have undergone an even number of twists each through 180°, they are still equivalent
but are not physically deformable into one another. Each of the bifacial surfaces is
doubly connected (for a single cross-cut renders each simply connected) and each of them

* Ueber Riemann’s Theorie der algebraischen Functionen wund ihrer Integrale, (Leipzig,
Teubner, 1882), p. 26.
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has two boundaries. If however the ribbon, previous to being closed, have undergone
an odd number of twists each through 180° the surface thus obtained is not equivalent to
the single-holed portion of the plane ; it is unifacial and has only one boundary.

A spherical surface pierced in n+1 holes is equivalent to a bounded portion of the
plane with n holes ; each is of connectivity n+1 and has »+1 boundaries. The spherical
surface can be deformed into the plane surface by stretching one of its holes into the form
of the outside boundary of the plane surface.

Ez. Prove that the surface of a bounded anchor-ring can be physically deformed into
the surface in Fig. 47, p. 332.

For continuation and fuller development of the subjects of the present chapter, the
following references, in addition to those which have been given, will be found useful :

Klein, Math. Ann., t. vii, (1874), pp. 548—557; ib., t. ix, (1876), pp. 476—482.

Lippich, Math. Ann., t. vii, (1874), pp. 212—229 ; Wiener Sitzungsb., t. Ixix, (i),
(1874), pp. 91—99.

Durdge, Wiener Sitzungsb., t. lxix, (ii), (1874), pp. 115—120; and section 9 of his
treatise, quoted on p. 316, note.

Neumann, chapter vii of his treatise, quoted on p. 5, note.

Dyck, Math. Ann., t. xxxii, (1888), pp. 467—512, ib., t. xxxvii, (1890), pp. 273—316;
at the beginning of the first part of this investigation, a valuable series of references
is given.

Dingeldey, Topologische Studien, (Leipzig, Teubner, 1890).



