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But  (cone or segment of cone A PP’) : (segment 4 PP’)
=A'N : NH’ [Props. 29, 30]
=AN.A'N: AN.NH'.

Therefore, ex aequaly,

(cone or segment of cone ABB’) : (segment A PP’)
=AK.CA" : AN.NH’,

so that (spheroid) : (segment 4 PP’)
=HH'.AK : AN.NH’,
since HH' =404’

Hence (segment A’PP’) : (segment A PP’)
=(HH .AK—AN.NH'): AN.NH’
=(AK.NH+NH'.NK): AN.NH".

Further,
(segment APP’) : (cone or segment of cone A PP’)

=NH': A'N
=AN.NH': AN.A'N,

and

(cone or segmt. of cone APP’) : (cone or segmt. of cone A’PP")
=AN : A'N
=AN.A'N: A'N*.

From the last three proportions we obtain, ez aequals,
(segment A’PP’) : (cone or segment of cone 4’PP’)
=(AdK.NH+ NH'.NK) : A'N*
=(AK.NH + NH'.NK) : (CA*+ NH'.CN)
=(AK.NH+ NH' .NK):(AK.AN + NH'.CN)...(8).
But
AK .NH : AK . AN=NH : AN
=(CA+AN: AN

=AK+CA :CA
(since AK : AC=AC: AN)
=HK :CA

=HK—-NH:CA—-AN
=NK :CN
=NH'.NK : NH'.CN.
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Hence the ratio in (B) is equal to the ratio
AK.NH : AK.AN, or NH : AN.

Therefore
(segment A’PP’) : (cone or segment of cone 4’PP’)
=NH : AN
=CA+AN: AN.

[If (z, y) be the coordinates of P referred to the conjugate
diameters A 4’, BB’ as axes of z, y, and if 2a, 2b be the lengths
of the diameters respectively, we have, since

~ (spheroid) — (lesser segment) = (greater segment),

20 4+ x
a+x

20—z
Y (a—a)= P P (a+);

4. ab® -

and the above proposition is the geometrical proof of the truth
of this equation where @, y are connected by the equation
wB
o

2
+%=u



ON SPIRALS.

“ ARCHIMEDES to Dositheus greeting.

Of most of the theorems which I sent to Conon, and of
which you ask me from time to time to send you the proofs, the
demonstrations are already before you in the books brought to
you by Heracleides ; and some more are also contained in that
which I now send you. Do not be surprised at my taking a
considerable time before publishing these proofs. This has
been owing to my desire to communicate them first to persons
engaged in mathematical studies and anxious to investigate
them. In fact, how many theorems in geometry which have
seemed at first impracticable are in time successfully worked out!
Now Conon died before he had sufficient time to investigate
the theorems referred to; otherwise he would have discovered
and made manifest all these things, and would have enriched
geometry by many other discoveries besides. For I know well
that it was no common ability that he brought to bear on
mathematics, and that his industry was extraordinary. But,
though many years have elapsed since Conon’s death, I do not
find that any one of the problems has been stirred by a single
person. I wish now to put them in review one by one,
particularly as it happens that there are two included among
them which are impossible of realisation* [and which may
serve as a warning] how those who claim to discover every-
thing but produce no proofs of the same may be confuted as
having actually pretended to discover the impossible.

* Heiberg reads ré\os 8¢ wofecbueva, but F has ré\ovs, so that the true reading
is perhaps 7é\ovs 8¢ mordebueva. The meaning appears to be simply ¢ wrong.’
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What are the problems I mean, and what are those of which
you have already received the proofs, and those of which the
proofs are contained in this book respectively, I think it proper
to specify. The first of the problems was, Given a sphere, to find
a plane area equal to the surface of the sphere; and this was
first made manifest on the publication of the book concerning the
sphere, for, when it is once proved that the surface of any sphere
1s four times the greatest circle in the sphere, it is clear that it
is possible to find a plane area equal to the surface of the sphere.
The second was, Given a cone or a cylinder, to find a sphere
equal to the cone or cylinder; the third, To cut a given sphere
by a plane so that the segments of it have to one another an
assigned ratio ; the fourth, To cut a given sphere by a plane so
that the segments of the surface have to one another an assigned
ratio ; the fifth, To make a given segment of a sphere similar to
a given segment of a sphere*; the sixth, Given two segments of
either the same or different spheres, to find a segment of a sphere
which shall be similar to one of the segments and have its
surface equal to the surface of the other segment. The seventh
was, From a given sphere to cut off a segment by a plane so
that the segment bears to the cone which has the same base as
the segment and equal height an assigned ratio greater than
that of three to two. Of all the propositions just enumerated
Heracleides brought you the proofs. The proposition stated
next after these was wrong, viz. that, if a sphere be cut by a
plane into unequal parts, the greater segment will have to the
less the duplicate ratio of that which the greater surface has to
the less. That this is wrong is obvious by what I sent you
before ; for it included this proposition: If a sphere be cut into
unequal parts by a plane at right angles to any diameter in the
sphere, the greater segment of the surface will have to the less
the same ratio as the greater segment of the diameter has
to the less, while the greater segment of the sphere has to the
less a ratio less than the duplicate ratio of that which the

*

70 d00¢v Tudua opalpas T Sobévti Tuduart opalpas duowdsar, i.e. to make a
segment of a sphere similar to one given segment and equal in content to
another given segment. [Cf. On the Sphere and Cylinder, II. 5.]
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greater surface has to the less, but greater than the sesqui-
alterate* of that ratio. The last of the problems was also wrong,
viz. that, if the diameter of any sphere be cut so that the square
on the greater segment is triple of the square on the lesser
segment, and if through the point thus arrived at a plane be
drawn at right angles to the diameter and cutting the sphere,
the figure in such a form as is the greater segment of the sphere
18 the greatest of all the segments which have an equal surface.
That this is wrong is also clear from the theorems which I
before sent you. For it was there proved that the hemisphere
is the greatest of all the segments of a sphere bounded by an
equal surface.

After these theorems the following were propounded con-
cerning the conet. If a section of a right-angled cone [a
parabola], in which the diameter [axis] remains fixed, be made to
revolve so that the diameter [axis] is the axis [of revolution],
let the figure described by the section of the right-angled cone
be called a conotd. And if a plane touch the conoidal figure
and another plane drawn parallel to the tangent plane cut off
a segment of the conoid, let the base of the segment cut off be
defined as the cutting plane, and the vertex as the point in which
the other plane touches the conoid. Now, if the said figure be
cut by a plane at right angles to the axis, it is clear that the
section will be a circle ; but it needs to be proved that the
segment cut off will be half as large again as the cone which has
the same base as the segment and equal height. And if two
segments be cut off from the conoid by planes drawn in any
manner, it 1s clear that the sections will be sections of acute-
angled cones [ellipses] if the cutting planes be not at right
angles to the axis; but it needs to be proved that the
segments will bear to one another the ratio of the squares on

the lines drawn from their vertices parallel to the axis to meet
~ the cutting planes. The proofs of these propositions are not
yet sent to you.

After these came the following propositions about the spiral,

* (Adyov) metfova 7§ fuibhiov Tob, ov Exel k.T.\., i.e. & ratio greater than (the

ratio of the surfaces)%. See On the Sphere and Cylinder, 11. 8.
+ This should be presumably * the conoid,’ not  the cone.’
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which are as it were another sort of problem having nothing
in common with the foregoing; and I have written out the
proofs of them for you in this book. They are as follows. 'If a
straight line of which one extremity remains fixed be made to
revolve at a uniform rate in a plane until it returns to the
position from which it started, and if, at the same time as the
straight line revolves, a point move at a uniform rate along the
straight line, starting from the fixed extremity, the point will
describe a spiral in the plane. I say then that the area
bounded by the spiral and the straight line which has returned
to the position from which it started is a third part of the circle
described with the fixed point as centre and with radius the
length traversed by the point along the straight line during the
one revolution. And, if a straight line touch the spiral at the
extreme end of the spiral, and another straight line be drawn at
right angles to the line which has revolved and resumed its
position from the fixed extremity of it, so as to meet the
tangent, I say that the straight line so drawn to meet it is
equal to the circumference of the circle. Again, if the revolving
line and the point moving along it make several revolutions
and return to the position from which the straight line started,
I say that the area added by the spiral in the third revolution
will be double of that added in the second, that in the fourth
three times, that in the fifth four times, and generally the areas
added in the later revolutions will be multiples of that added in
the second revolution according to the successive numbers,
while the area bounded by the spiral in the first revolution is a
sixth part of that added in the second revolution. Also, if on
the spiral described in one revolution two points be taken and
straight lines be drawn joining them to the fixed extremity of
the revolving line, and if two circles be drawn with the fixed
point as centre and radii the lines drawn to the fixed extremity
of the straight line, and the shorter of the two lines be produced,
I say that (1) the area bounded by the circumference of the
greater circle in the direction of (the part of) the spiral included
between the straight lines, the spiral (itself) and the produced
straight line will bear to (2) the area bounded by the circum-
ference of the lesser circle, the same (part of the) spiral and the
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straight line joining their extremities the ratio which (3) the
radius of the lesser circle together with two thirds of the excess
of the radius of the greater circle over the radius of the lesser
bears to (4) the radius of the lesser circle together with one

third of the said excess.

The proofs then of these theorems and others relating to the
spiral are given in the present book. Prefixed to them, after the
manner usual in other geometrical works, are the propositions
necessary to the proofs of them. And here too, as in the books
‘previously published, I assume the following lemma, that, if
there be (two) unequal lines or (two) unequal areas, the excess
by which the greater exceeds the less can, by being [continually]
added to itself, be made to exceed any given magnitude among
those which are comparable with [it and with] one another.”

Proposition 1.

If a pornt move at a uniform rate along any line, and two
lengths be taken on tt, they will be proportional to the times of
describing them.

Two unequal lengths are taken on a straight line, and two
lengths on another straight line representing the times; and
they are proved to be proportional by taking equimultiples of

each length and the corresponding time after the manner of
Eucl. V. Def. 5.

Proposition 2.

If each of two points on different lines respectively move along
them each at a uniform rate, and if lengths be taken, one on each
line, forming parrs, such that each pair are described in equal
tumes, the lengths will be proportionals.

This is proved at once by equating the ratio of the lengths
taken on one line to that of the times of description, which
must also be equal to the ratio of the lengths taken on the other
line.
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Proposition 3.

Gven any number of circles, it s possible to find a stravght
line greater than the sum of all their circumferences.

For we have only to describe polygons about each and then
take a straight line equal to the sum of the perimeters of the

polygons.

Proposition 4.

(iven two unequal lines, viz. a straight line and the circum-
ference of a circle, it is possible to find a straight line less than
the greater of the two lines and greater than the less.

For, by the Lemma, the excess can, by being added a sufficient
number of times to itself, be made to exceed the lesser line.

Thus e.g., if ¢ > (where ¢ is the circumference of the circle
and ! the length of the straight line), we can find a number n

such that
n(c—10)>1.

Therefore c—1> % ,

and c>l+i—>l.

Hence we have only to divide ! into n equal parts and add
one of them to l. The resulting line will satisfy the condition.

Proposition 5.

Gven a curcle with centre O, and the tangent to <t at a point
A, it vs possible to draw from O a straight line OPF, meeting the
circle in P and the tangent in F, such that, if ¢ be the circum-
Jerence of any given circle whatever,

FP:0P< (arc AP) : c.

Take a straight line, as D, greater than the circumference c.
[Prop. 3]
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Through O draw OH parallel to the given tangent, and
draw through 4 a line APH, meeting the circle in P and OH

A F

D

in H, such that the portion PH intercepted between the circle
and the line OH may be equal to D*. Join OP and produce
it to meet the tangent in F.
Then FP : 0P = AP : PH, by parallels,
=AP:D
<(arc AP) :c.

Proposition 6.

Gwen a circle with centre O, a chord AB less than the
diameter, and OM the perpendicular on AB from 0,1t is possible
to draw a straight line OF P, meeting the chord AB in F and the

circle in P, such that
FP:PB=D:E,

where D : E is any given ratio less than BM : MO.

Draw OH parallel to 4B, and BT perpendicular to BO
meeting OH in T.

Then the triangles BMO, OBT are similar, and therefore
BM : MO=0B: BT,
whence D:E<OB: BT.

* This construction, which is assumed without any explanation as to how it
is to be effected, is described in the original Greek thus: ‘“let PH be placed
(keloBw) equal to D, verging (vevovoa) towards 4, This is the usual phraseology
used in the type of problem known by the name of veias.
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Suppose that a line PH (greater than BT') is taken such
that
D:E=0B:PH,

E

and let PH be so placed that it passes through B and P lies on
the circumference of the circle, while H is on the line OH*,
(PH will fall outside BT, because PH > BT.) Join OP meeting
ABin F.

We now have

FP:PB=0OP:PH
=(0B: PH
=D:FE

Proposition 7.

Qiven o circle with centre O, a chord AB less than the
diameter, and OM the perpendicular on it from O, it is possible
to draw from O a straight line O PF, meeting the circle in P and
AB produced in F, such that

FP:PB=D:E,
where D : E is any given ratio greater than BM : MO.

Draw OT parallel to AB, and BT perpendicular to BO
meeting OT in 7.

» The Greek phrase is ¢let PH be placed between the circumference and the
gtraight line (OH) through B.” The construction is assumed, like the similar
one in the last proposition.
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In this case, D:E>BM: MO
> OB : BT, by similar triangles.
A ™ B F
P
(o} H T
D
E

Take a line PH (less than BT') such that
D:KE=0B:PH,
and place PH so that P, H are on the circle and on OT respec-
tively, while HP produced passes through B*.
Then FP:PB=0P:PH
=D:FE.

Proposition 8.

Given a circle with centre O, a chord AB less than the
diameter, the tangent at B, and the perpendicular OM from O
on AB, it is posstble to draw frem O a straight line OFP,
meeting the chord AB in F, the circle in P and the tangent in G,
such that

FP:BG=D:E,

where D : K s any given ratio less than BM : MO.
If OT be drawn parallel to 4 B meeting the tangent at Bin T,
BM : MO = 0B : BT,

so that D:E<O0OB:BT.
Take a point €' on T'B produced such that
D:E=0B: BC,
whence BC > BT.

* PH is described in the Greek as redovsar émi (verging to) the point B. As
before the construction is assumed.
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Through the points 0, 7, C describe a circle, and let OB be
produced to meet this circle in K,

Then, since BC > BT, and OB is perpendicular to CT, it is
possible to draw from O a straight line OGQ, meeting CT in &
and the circle about OT'C in @, such that GQ = BK*.

Let OGQ meet AB in F and the original circle in P.

Now CG.GT=0G.G0Q;
and OF : OG =BT : GT,
so that OF.GT =0G. BT.

It follows that
CG.GQT:0F.GT = 0G.GQ : 0G.BT,
or CG:0F=GQ: BT
= BK : BT, by construction,
= BC : OB
= BC : OP.
Hence OP : OF = BC : C@,
and therefore PF : 0P =BG : BC,
or PF:BG=0P: BC
= 0B : BC
= D: LK.

* The Greek words used are: ‘it is possible to place another [straight line]
GQ equal to KB verging (vedovoav) towards O.” This particular vefoes is
discussed by Pappus (p. 298, ed. Hultsch). See the Introduction, chapter v.
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Proposition 9.

Giwen a circle with centre O, @ chord AB less than the
diameter, the tangent at B, and the perpendicular OM from O
on AB, it us possible to draw from O a straight line OPGF,
meeting the circle in P, the tangent in G, and AB produced in F,
such that

FP:BG=D:E,

where D : E is any given ratio greater than BM : MO.

Let OT be drawn parallel to AB meeting the tangent at B
in T.

Then D:E>BM: MO
> OB : BT, by similar triangles.
Produce 7B to C so that
D:FE=0B : BC,
whence BC < BT.

Describe a circle through the points 0, T, C, and produce OB
to meet this circle in X,

Then, since T'B > BC, and OB is perpendicular to C7, it is
possible to draw from O a line 0G'Q, meeting C7 in @, and the

H. A, 11
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circle about O7C in @, such that GQ = BK*. Let 0@ meet
the original circle in P and AB produced in F.
We now prove, exactly as in the last proposition, that
CG : OF=BK: BT

= BC : OP.
Thus, as before,
OP : OF = BC : C@,

and OP : PF = BC : BG,

whence PF :BG = 0P : BC
= 0B : BC
= D: K.

Proposition 10.

If A,,4,, 4;,...4, be n lines forming an ascending arith-
metical progression wn which the common difference is equal
to A,, the least term, then

(n+1D) A+ A4, (4, + 4,4+ ...+ 4,) =34+ 4.7 +... + 4,)).

[Archimedes’ proof of this proposition is given above, p. 107—
9, and it is there pointed out that the result is equivalent to

n(n+1)(2n+1)

1+ 22+ 3+ ... +n'= 6 ]

Cor. 1. It follows from this proposition that

n. AL <347+ 47+ ... + 4,0,
and also that
n. A.ng > 3 (A12 + A22 + cae + An_12)-

[For the proof of the latter inequality see p. 109 above.]
Cor. 2. Al the results will equally hold <f similar figures
are substituted for squares.

* See the note on the last proposition,
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Proposition 11.

If A,, A,,...A, be n lines forming an ascending arith-
metical progression [in which the common difference is equal to
the least term A,)*, then

(n—1)A4,: (4 + 4, +...+ 47

<A, : {4, A, +1(4,—-4)Y;
but

(=14, : (Ap + A0+ ...+ 4D
>4, {4y . 4,+ 1 (4n— 4

[Archimedes sets out the terms side by side in the manner
shown in the figure, where BC=A4,, DE=A4,_,,...RS= A4,, and
produces DE, F@,...RS until they are
respectively equal to BC or 4,,s0 that o 4 |, T U
EH, GI,..8U in the figure are re-
spectively equal to 4,, 4,...4,,. He
further measures lengths BK, DL, ¢1
FM,...PV along BC, DE, F@,...PQ re-
spectively each equal to RS.

The figure makes the relations a+
between the terms easier to see with
the eye, but the use of so large a
number of letters makes the proof 8 D F PR
somewhat difficult to follow, and it
may be more clearly represented as follows.]

It is evident that (4, — 4,)=4,,.

Kt U 1M v+ 8t

The following proportion is therefore obviously true, viz.

(n=1)A4,": (n—1)(4dy. 4, + 3} 450
=A,2: (A, . A, +1(4,— A)).

* The proposition is true even when the common difference is not equal to
4, and is assumed in the more general form in Props. 25 and 26. But, as
Archimedes’ proof assumes the equality of 4, and the common difference, the
words are here inserted to prevent misapprehension.

11—2
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In order therefore to prove the desired result, we have only
to show that

=14, . 4, +3(n—-1) 4,"< (42" + 4, +...+ 4))
but >(Ant+Ang+...+ A0
I. To prove the first inequality, we have
m=1DA4, 4, +i(n-1) 4.

=(n-1)A+(n—-1)A4, A, +3(n—-1)4,"...(1).
And

A+ A+, .+ 47
=(Apa+4)+An+4)+...+(4+ 4)
=d,P+4,5+...+ 47
+(n-1)4;7
+24,(Ap+dpno+...+4)

=(Anlt+4n’+... +47)
+(n—-1) 4,

+ A4, {Ana+An s+ Ans+...+ 4,
+A4, +4, +...+4,+4,}

= (An——12 + An—: +...+ Alg)
+(n—1)4;
A A e e (2).

Comparing the right-hand sides of (1) and (2), we see that
(n—1) 4 is common to both sides, and

(n—1)A4,. 4, ,<nd,. 4,
while, by Prop. 10, Cor. 1,

ln-1DA4, <4, "+ 4, +...+4°
It follows therefore that
(m—=1)4,. 4, +3(n—1) A4, <A+ 4"+ ...+ 4));
and hence the first part of the proposition is proved.

II. We have now, in order to prove the second result, to
show that

(n=1)An. A1 +3(n—1) Ap?> (AP + Ap_2 + ... +47).
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The right-hand side is equal to
(Anot A)+(Ans+4) + ...+ (4, +4)+ 47
=4, +A4, +...+4;}°
+(n—-1)A4,*
+24,(Ap o+ Aps+ ...+ 4)
=(Ap'+4ns+...+ 47
+(m—-1) 4.
+A1{ Ap+A4, s+... + 4, }
+4, +4;, +..+4,.,
=(Aps +Ans+ ...+ 47
+(n-1)4,"
FMm=2) A Ap e (3).

Comparing this expression with the right-hand side of (1) above,
we see that (n — 1) 4,® is common to both sides, and

(n-1)A4,. 4, ,>(n—-2)4,.4,,,
while, by Prop. 10, Cor. 1,
tn-1A4,>A, "+ A, +...+ 47
Hence
-4, A, +1(n—-1)A4, " >A, S +4,"+...+4.);
and the second required result follows.

Cor. The results in the above proposition are equally true if
simalar figures be substituted for squares on the several lines.

DEFINITIONS.

1. If a straight line drawn in a plane revolve at a uniform
rate about one extremity which remains fixed and return to
the position from which it started, and if, at the same time as
the line revolves, a point move at a uniform rate along the
straight line beginning from the extremity which remains fixed,
the point will describe a spiral (é\:£) in the plane.

2. Let the extremity of the straight line which remains
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fixed while the straight line revolves be called the origin*
(apxa) of the spiral.

3. And let the position of the line from which the straight
line began to revolve be called the initial line* in the
revolution (a@pyxa Tds mepipopas).

4. Let the length which the point that moves along the
straight line describes in one revolution be called the first
distance, that which the same point describes in the second
revolution the second distance, and similarly let the distances
described in further revolutions be called after the number of
the particular revolution.

5. Let the area bounded by the spiral described in the
first revolution and the first distance be called the first area,
that bounded by the spiral described in the second revolution
and the second distance the second area, and similarly for the
rest in order.

6. If from the origin of the spiral any straight line be
drawn, let that side of it which is in the same direction as that
of the revolution be called forward (mpoayovueva), and that
which is in the other direction backward (émoueva).

7. Let the circle drawn with the origin as centre and the
first distance as radius be called the first circle, that drawn
with the same centre and twice the radius the second circle,
and similarly for the succeeding circles.

Proposition 12.

If any number of straight lines drawn from the origin to
meet the spiral make equal angles with one another, the lines wnill
be in arithmetical progression.

[The proof is obvious.]
* The literal translation would of course be the ‘beginning of the spiral’’

and *the beginning of the revolution” respectively. But the modern names
will be more suitable for use later on, and are therefore employed here.
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Proposition 13.
If a straight line touch the spiral, it will touch 1t wn one point
only.
Let O be the origin of the spiral, and BC a tangent to it.

If possible, let BC touch the spiral in two points P, Q.

Join OP, 0Q, and bisect the angle POQ by the straight line OR
meeting the spiral in E.

Then [Prop. 12] OR is an arithmetic mean between OP and
0Q, or
OP + 0Q =20R.
But in any triangle POQ), if the bisector of the angle POQ

meets PQ in K,
OP + 0Q > 20K *,

Therefore OK < OR, and it follows that some point on BC
between P and @ lies within the spiral. Hence BC cuts the
spiral; which is contrary to the hypothesis.

Proposition 14.

If O be the origin, and P, Q two points on the first turn of
the spiral, and if OP, 0Q produced meet the ‘first circle’
AKP'Q in P’, Q' respectively, OA being the initial line, then

OP : 0Q = (arc AKP’): (arc AKQ').

For, while the revolving line 04 moves about O, the point

A on it moves uniformly along the circumference of the circle

* This is assumed as a known proposition ; but it is easily proved.
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AKP'Q’, and at the same time the point describing the spiral
moves uniformly along OA.

K

Thus, while A describes the arc AKP’, the moving point on
OA describes the length OP, and, while 4 describes the arc
AKQ', the moving point on OA4 describes the distance 0Q.

Hence OP:0Q=(arc AKP'): (arc AKQ’). [Prop. 2]

Proposition 15.

If P, Q be points on the second turn of the spiral, and OP,
0Q meet the ‘first circle’ AKP'Q in P’, Q', as in the last
proposition, and if c be the circumference of the first circle, then

OP : 0Q=c+ (arc AKP’) : ¢+ (arc AKQ").

For, while the moving point on OA describes the distance
OP, the point A describes the whole of the circumference of
the ‘first circle’ together with the arc AKP’; and, while the
moving point on OA describes the distance 0@, the point A4
describes the whole circumference of the ‘first circle’ together
with the arc AKQ'.

CoRr. Similarly, if P, Q are on the nth turn of the spiral,
OP:0Q=(mn-1)c+ (arc AKP"): (n—1) ¢+ (arc AKQ").



